
Soft-IP Interface Modification Methodology

Xiaozhou Meng, Benny Thörnberg and Najeem Lawal

 Department of Information Technology and Media Mid Sweden University Holmgatan 10,

Sundsvall, Sweden

{xiaozhou.meng, benny.thornberg, najeem.lawal}@miun.se

Abstract. The reuse of predefined Intellectual Property (IP) can lead to great success in system design and
help the designer to meet time-to-market requirements. A soft IP usually needs some customization and
integration efforts rather than plug-and-play. Communication interface mismatch is one of the problems that
integrators often meet. This paper suggests a soft IP interface modification methodology (SIPIMM) for
systems on Field Programmable Gate Array (FPGA). SIPIMM targets an interface-based soft IP model which
is introduced to ease the interface modification and interface reuse. A case study of an open-source IP is
presented using SIPIMM for system integration.

Keywords: soft IP, FPGA, interface mismatch

1. Introduction
It is widely recognised that reuse and sharing IP is becoming fundamental to closing the deep sub-micron

design gap for successful system-on-chip (SOC) design [1]. Digital IP is the most popular form for design
reuse in today’s industry, which can be divided into three categories: soft, firm and hard [2]. If an IP core is
truly reusable, it must remain untouched as it moves from system to system. Hard and firm IPs might have
the ability to plug-and-play within a single technology. Soft IP is more portable but usually need some
customization and integration efforts [3].

The soft-IP portability issue is described in figure 1. It also presents an example case further elaborated
in section 5. The IP integrator chooses the IP with the right functionality and performance and then imports it
into their IP component library. IP components can be bought from IP vendors like FPGA vendors, third-
party IP suppliers or internal IP providers. The integrator will get support and guarantee from the providers.
Another possible cost saving choice is open source based IP. IP can be downloaded for free but with little
guarantee. The users might spend a lot of efforts to make it work since they get very limited support from the
provider.

Designers face difficulties when an IP needs to be integrated into the target system. Several factors such
as choice of FPGA vendor, tool/library and communication interfaces should be considered. Each FPGA
vendor has its own technology and fabrics. Tool/library can be differing a lot. Moreover, communication
protocols between IP cores are diverse. All together, these factors generate lots of obstacles for the IP
portability.

The aim of the work presented in this paper is to propose a methodology for an increased IP portability
along the Communication axis shown in figure 1. We present a soft IP interface modification methodology
(SIPIMM) which will result in an efficient reuse of soft IPs.

FPGA Vendor
Tool/ library

IP
Vendor

Open
Source

ISE/EDK 10.1
Xilinx

NPI

OPB

FSL

Communication IP ProviderIP Integrator

Fig. 1: Soft-IP portability issue for IP integrator

 2011 International Conference on Information and Electronics Engineering
IPCSIT vol.6 (2011) © (2011) IACSIT Press, Singapore

13

2. Related work
The WISHBONE SOC interconnection architecture [4] creates a common interface between IP cores

which is used by many designs in the OpenCores [5] project. An interface-based design methodology [6] is
proposed which separates communication from behavior of the core. The focus of such a method would be
on how the modules interface with each other. SPIRIT consortium [7] proposed the IP-XACT description
which is an XML-based SOC meta-data specification as a standard to describe the components of a SOC
platform. IP-XACT components can be assembled into a SOC platform directly using IP-XACT compliant
tools, which greatly improves the interoperability of SOC platform.

3. Communication interface mismatch
The idea of plug-and-play IP is the goal for IP reuse in today’s industry; however, some obstacles

lengthen the path to this goal. Communication interface mismatch is one of them.
Different On-Chip bus standards are defined by several leading companies and associations. There are

mainly two types of communication interfaces: (1) Standard bus interface, which uses standard
communication protocols. This type of interface is easy to connect because of its regularity. (2) Custom bus
interface, which represents customizable communication protocols. It can be defined by the designers for
some special purposes.

Different bus interface protocols are not compatible with each other. It seems hard to create a uniform
bus standard for SOC interconnection. In addition, the bus standards are evolving such that a previously
developed IP might have an earlier version of interface protocol. For a hard or firm IP, backward
compatibility is not always guaranteed unless integrator adds an extra hardware bridge to plug it into the new
system. Due to the flexibility of soft IP, the interface protocol can be modified to match the interface
requirement of the new system.

4. Methodology
To make efficient reuse of IP and its interfaces, an interface-based soft IP model is introduced. Based on

this model, the methodology SIPIMM is proposed to ease the communication interface mismatch problem.

4.1. IP verification
When the integrator get the IP, it is necessary to know its usage history. From a functional point of view,

whether the IP has been proven in silicon or not is valuable information to know. This detailed information
includes in which device or configuration it was used and what the success rate is and so on. This is useful
information which will help the integrator to avoid the detours.

After this investigation and depending on its outcome, an ambitious functional verification of the IP core
should be carried out. This step can for example be particularly important for an open-source IP having very
limited guarantees. Any test bench or verification methodology from the IP provider will ease this work.
Otherwise, this task can be tough and time consuming, especially for configurable IPs.

4.2. Interface-based soft IP model
Soft IP core has the possibility to communicate with an external system. The on-chip system includes on-

chip bus, other system components or peripheral. The core can be an initiator (master) core or a target (slave)
core depending on the implementation. For the interface-based soft IP model, several boundaries inside the
core should be clarified, shown in figure 2.

On-Chip
System

Soft IP
Core

IPC1

Interface
Block

…

Computational
Block

Fcn1

Fcn2

Fcnm

…

IPC2

IPCn

Fig. 2: A generalized interface-based soft IP model

14

1) Isolate the computation logic from the interface logic: The soft IP core can be mainly divided into two
blocks: computational block and interface block. The Computational Block contains the main logic functions
of an IP. The Interface Block implements all IP communication divided into one or several Interface Protocol
Cells (IPC) as well as various ports for dataflow, control signals and debug signals. The Computational
Block has a higher chance of being re-used since the Interface Block might be changed frequently due to
different system configurations. This separation of computation from communication is effective for IP
database management. It is a suggestion to the IP providers for creating reuse of IP in SOC Design [8].

2) Boundaries between functions: Different functions in the Computational Block should have clear
boundaries (Fcn1 to Fcnm). It might occur that the integrators only need parts of the functions of a
Computational Block. A reduced Computational Block must then be working correctly after removing some
of the unnecessary functions.

3) Boundaries between IPCs: When using multiple interfaces, each IPC should be independent (IPC1 to
IPCn). This also prepares the way for selective reuse in the future design.

4.3. Interface modification
1) Interface selection: Before designing the Interface Block, the integrator should already have enough
investigation to make a decision on which kind of communication interface is most suitable for the design
specification. When the core requires multiple interfaces, the Interface Block is just the assembly of different
IPCs. IPC can be predefined and reused. This method for interface reuse can save a lot of time since the
designer only needs to change some parameters without compromising the functionality of the IP core.

2) Interface design: One or more IPCs might be designed if they are not predefined.
• IPC design: Computational Block is a set of Dummy Functions in this case. See figure 3a. This set of

dummies can be any synthesizable simple logic or test vector generator. Simulate the IP that
contains the Dummy Functions and the IPC using a simple test bench. After that, synthesize the
RTL code and write software application. Implement IP verification in the FPGA prototype.
Because the IPC is aim for widespread reuse block, verification must aim for zero-defect.

• IPCs assembling (multiple interfaces): Iteratively assemble and verify the designed or predefined
IPCs one by one, until the whole Interface Block is verified through simulation and hardware
prototyping. A model of an assembled Interface Block with Dummy Functions is shown as Figure
3b.

3) Interface mapping: Remove the original Interface Block. Map the output of the Computation Block to the
input of the newly designed Interface Block. Write a test bench to verify the functionality of the complete IP
as depicted in figure 2.

4.4. IP integration
Synthesize the RTL code. Write the software driver and test software for functional verification of the IP

core. Integrate the whole IP into the system by connecting it to a simplified SOC for functional verification.
Run the test software for the entire system. Evaluate the IP function and performance to finalize the design.

5. Case study: interface modification of M-JPEG decoder
The motivation for this part of our work was to implement an M-JPEG decoder into a Video Transmit

over IP (Internet Protocol) system and to analyze the usage of the methodology SIPIMM. We started this
work from an M-JPEG decoder project [9] that was downloaded for free from OpenCores. This VHDL
project comes with an earlier version of the bus interface OPB (On-chip Peripheral Bus) [10]. The video
output directly connects to the monitor which does not meet our system specification. Figure 4 shows the

Computational Block

Dummy
Functions

Data

Control

IPC

Protocol

Fig. 3a: IPC design with a dummy function in the computation block.

Computational
Block

Dummy
Functions

IPC1

…

IPC2

IPCn

Interface Block

Fig. 3b: Interface design with dummy functions in the computational

15

architecture of the original decoder system. The Decoder IP behaves as an OPB master on the bus and can
fetch compressed JPEG data from Memory. The uncompressed RGB data is directly output to the Monitor.
Three main blocks are involved: OPB IPIF is the OPB bus interface protocol. M-JPEG Decoder decodes the
compressed JPEG data and outputs uncompressed RGB data in a sequence corresponding to a series of
Minimum Coded Units (MCU). VGA reorders the MCU-wise data to line-wise data for output. The VGA
Controller can be considered to support a communication protocol for the monitor interface.

For the original project from OpenCores, the FPGA vendor and the device family was fixed to Xilinx
Virtex II pro. This limitation matches our initial system requirements. However, due to the change of
development environment, we were facing a communication mismatch requiring modifications of the
interfaces from OPB to Fast Simplex Link (FSL) [10] and from VGA monitor output to Native Port Interface
(NPI) [10]. Next parts of this section describe the work of modifying these interfaces using the proposed
methodology SIPIMM.

5.1. IP verification
Firstly, the functionality of the original decoder IP was verified by simulation using the test bench

supplied as part of the decoder project. After that, we implemented the original system of the project on our
FPGA board. The IP functionality was verified using the original development environment of the project.

5.2. Interface-based soft IP model
The computation and interface boundaries were vague in the original IP structure. VGA Controller

(interface protocol) and Reorder (computational) were blended. It represented low portability and was hard
to migrate to other system with different functions and different bus interfaces. In order to integrate the core
into our system and increase its portability, several modifications to its structure were performed.

For this work, we defined the interface-based soft IP model shown in figure 5. The Reorder function was
made into a part of the Computational Block and the VGA function was removed from the Decoder IP. The
Interface Block contains two IPCs for streaming of compressed and uncompressed video. There is clearly a
distinct separation of computation from communication in the developed interface-based soft IP model
shown in figure 2.

5.3. Interface modification
1) Interface selection: According to the investigation and system specification, the FSL and NPI interfaces
were selected to replace the OPB and VGA interfaces. The On-Chip System feeds the decoder IP with
compressed video through the FSL interface at IPC1. The decoder IP outputs data to the system through the
NPI interface at IPC2. The NPI interface was selected for its low latency and high bandwidth target to
memory which is ideal for real time video communication. FSL and NPI are custom interfaces and not
predefined, so the two IPCs must be designed.

M-JPEG
Decoder

Reorder

IPC1

IPC2

Interface
Block

Computational
Block

On-Chip
System

Decoder
IP

Fig. 5: Interface-based soft IP model for an M-JPEG decoder.

Fig. 4: Block diagram of original decoder project.

M-JPEG
Decoder

VGA
(VGA Controller
& Reorder)

Decoder
IP

OPB
IPIF

Mon
-itor

Memory

OPB

16

2) Interface design: The FSL and NPI interfaces were designed in accordance with figure 3a. The Dummy
Function was designed as a clock counter for verification of both interfaces. After simulation and
prototyping of both FSL and NPI, these interfaces were merged into a single interface block in accordance
with figure 3b. The Dummy Functions were now selected as a copy of input data from FSL to output on NPI.

3) Interface mapping: The reorder function component was connected to the M-JPEG decoder component
output. The FSL interface was mapped as an input port to the decoder function. The NPI interface was
mapped as an output port from the decoder function. Using a debugger, we could verify an image that was
decoded in hardware and written to the system’s memory through the NPI output.

5.4. IP integration
The Decoder IP shown in figure 6 was integrated with a complete SOC consisting of a MicroBlaze soft

processor core, Memory controller, a TFT controller for video displaying and other components not shown in
the figure. The MicroBlaze processor feeds the Decoder IP with compressed video through FSL. Decoded
video is written directly to memory by the decoder through NPI and into the same video memory area as also
read by the TFT controller on the Processor Local Bus (PLB) [10]. The graphics displaying for this SOC was
visually verified running the system on a prototyping board.

6. conclusion
This paper presents a methodology for the modification of soft IP interfaces. This methodology is based

on that computation is divided into functional units which have a distinct separation from communication.
The benefit is clearly the increased communication portability for soft IP. In addition, the increased reuse of
design works leads to a reduced work load for the IP integrator. A case study is presented to show that this
methodology can be efficiently applied on a real-world design. There are lots of essential issues for IP reuse
except for interface mismatch. IP design is a mixed topic with technical, financial and legal issues.

The future work includes using the SIPIMM for more IPs, as well as extended the implementation to
other vendor devices.

7. References
[1] N. Bray. Designing for the IP supermarket. In: Fall VIUF Workshop, 1999. pp. 8

[2] M.Keating and P.Bricaud. Reuse Methodology Manual: For System-on-a-Chip Designs, 3rd ed. Boston,
MA:Kluwer, 2002.

[3] Doh-Kyung Kim, Ki-Won Kwon, Jong-Chan Choi and Chul-Dong Lee. Reusable intellectual property cores in PC
data protection ASIC design. In: AP-ASIC '99, pp. 278-281.

[4] Specification for the: WSHBONE System-on-Chip(SoC) Interconnection Architecture for Portable IP Cores
Revision:B.3, Released: September 7, 2002

[5] OpenCores, http://www.opencores.org

[6] James A.R, Alberto S. Interface-based Design. In: Proc. Of 34th DAC, 1997, pp.178.

[7] The SPIRIT Consortium, IP-XACT Handoff Notes, http://www.spiritconsortium.org

[8] Pierre J.Bricaud. IP Reuse Creation for System-on-a-Chip Design. In: Proceedings of the Custom Integrated
Circuits, 1999. pp.395-401.

[9] (M)JPEG Decoder, http://www.opencores.org/project,mjpeg-decoder

[10] Xilinx, http://www.xilinx.com

Fig. 6: Block diagram of complete SOC including the updated decoder IP.

PLBMemory

MicroBlaze

TFT

Decoder
IPPLB

FSL

NPI

17

