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Abstract. The reuse of predefined Intellectual Property (IP) can lead to great success in system design and 
help the designer to meet time-to-market requirements. A soft IP usually needs some customization and 
integration efforts rather than plug-and-play. Communication interface mismatch is one of the problems that 
integrators often meet. This paper suggests a soft IP interface modification methodology (SIPIMM) for 
systems on Field Programmable Gate Array (FPGA). SIPIMM targets an interface-based soft IP model which 
is introduced to ease the interface modification and interface reuse. A case study of an open-source IP is 
presented using SIPIMM for system integration.  
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1. Introduction 
It is widely recognised that reuse and sharing IP is becoming fundamental to closing the deep sub-micron 

design gap for successful system-on-chip (SOC) design [1]. Digital IP is the most popular form for design 
reuse in today’s industry, which can be divided into three categories: soft, firm and hard [2]. If an IP core is 
truly reusable, it must remain untouched as it moves from system to system. Hard and firm IPs might have 
the ability to plug-and-play within a single technology. Soft IP is more portable but usually need some 
customization and integration efforts [3].  

The soft-IP portability issue is described in figure 1. It also presents an example case further elaborated 
in section 5. The IP integrator chooses the IP with the right functionality and performance and then imports it 
into their IP component library. IP components can be bought from IP vendors like FPGA vendors, third-
party IP suppliers or internal IP providers. The integrator will get support and guarantee from the providers. 
Another possible cost saving choice is open source based IP. IP can be downloaded for free but with little 
guarantee. The users might spend a lot of efforts to make it work since they get very limited support from the 
provider.  

Designers face difficulties when an IP needs to be integrated into the target system. Several factors such 
as choice of FPGA vendor, tool/library and communication interfaces should be considered. Each FPGA 
vendor has its own technology and fabrics. Tool/library can be differing a lot. Moreover, communication 
protocols between IP cores are diverse. All together, these factors generate lots of obstacles for the IP 
portability.  

The aim of the work presented in this paper is to propose a methodology for an increased IP portability 
along the Communication axis shown in figure 1. We present a soft IP interface modification methodology 
(SIPIMM) which will result in an efficient reuse of soft IPs. 
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Fig. 1: Soft-IP portability issue for IP integrator 
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2. Related work 
The WISHBONE SOC interconnection architecture [4] creates a common interface between IP cores 

which is used by many designs in the OpenCores [5] project. An interface-based design methodology [6] is 
proposed which separates communication from behavior of the core. The focus of such a method would be 
on how the modules interface with each other. SPIRIT consortium [7] proposed the IP-XACT description 
which is an XML-based SOC meta-data specification as a standard to describe the components of a SOC 
platform. IP-XACT components can be assembled into a SOC platform directly using IP-XACT compliant 
tools, which greatly improves the interoperability of SOC platform. 

3. Communication interface mismatch 
The idea of plug-and-play IP is the goal for IP reuse in today’s industry; however, some obstacles 

lengthen the path to this goal. Communication interface mismatch is one of them. 
Different On-Chip bus standards are defined by several leading companies and associations. There are 

mainly two types of communication interfaces: (1) Standard bus interface, which uses standard 
communication protocols. This type of interface is easy to connect because of its regularity. (2) Custom bus 
interface, which represents customizable communication protocols. It can be defined by the designers for 
some special purposes. 

Different bus interface protocols are not compatible with each other. It seems hard to create a uniform 
bus standard for SOC interconnection. In addition, the bus standards are evolving such that a previously 
developed IP might have an earlier version of interface protocol. For a hard or firm IP, backward 
compatibility is not always guaranteed unless integrator adds an extra hardware bridge to plug it into the new 
system. Due to the flexibility of soft IP, the interface protocol can be modified to match the interface 
requirement of the new system.    

4. Methodology 
To make efficient reuse of IP and its interfaces, an interface-based soft IP model is introduced. Based on 

this model, the methodology SIPIMM is proposed to ease the communication interface mismatch problem. 

4.1. IP verification 
When the integrator get the IP, it is necessary to know its usage history. From a functional point of view, 

whether the IP has been proven in silicon or not is valuable information to know. This detailed information 
includes in which device or configuration it was used and what the success rate is and so on. This is useful 
information which will help the integrator to avoid the detours. 

After this investigation and depending on its outcome, an ambitious functional verification of the IP core 
should be carried out. This step can for example be particularly important for an open-source IP having very 
limited guarantees. Any test bench or verification methodology from the IP provider will ease this work. 
Otherwise, this task can be tough and time consuming, especially for configurable IPs.  

4.2. Interface-based soft IP model 
Soft IP core has the possibility to communicate with an external system. The on-chip system includes on-

chip bus, other system components or peripheral. The core can be an initiator (master) core or a target (slave) 
core depending on the implementation. For the interface-based soft IP model, several boundaries inside the 
core should be clarified, shown in figure 2. 
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1)  Isolate the computation logic from the interface logic: The soft IP core can be mainly divided into two 
blocks: computational block and interface block. The Computational Block contains the main logic functions 
of an IP. The Interface Block implements all IP communication divided into one or several Interface Protocol 
Cells (IPC) as well as various ports for dataflow, control signals and debug signals. The Computational 
Block has a higher chance of being re-used since the Interface Block might be changed frequently due to 
different system configurations. This separation of computation from communication is effective for IP 
database management. It is a suggestion to the IP providers for creating reuse of IP in SOC Design [8]. 

2)  Boundaries between functions: Different functions in the Computational Block should have clear 
boundaries (Fcn1 to Fcnm). It might occur that the integrators only need parts of the functions of a 
Computational Block. A reduced Computational Block must then be working correctly after removing some 
of the unnecessary functions. 

3)  Boundaries between IPCs: When using multiple interfaces, each IPC should be independent (IPC1 to 
IPCn). This also prepares the way for selective reuse in the future design. 

4.3. Interface modification 
1)  Interface selection: Before designing the Interface Block, the integrator should already have enough 
investigation to make a decision on which kind of communication interface is most suitable for the design 
specification. When the core requires multiple interfaces, the Interface Block is just the assembly of different 
IPCs. IPC can be predefined and reused. This method for interface reuse can save a lot of time since the 
designer only needs to change some parameters without compromising the functionality of the IP core. 

2)  Interface design:  One or more IPCs might be designed if they are not predefined.  
• IPC design: Computational Block is a set of Dummy Functions in this case. See figure 3a. This set of 

dummies can be any synthesizable simple logic or test vector generator. Simulate the IP that 
contains the Dummy Functions and the IPC using a simple test bench. After that, synthesize the 
RTL code and write software application. Implement IP verification in the FPGA prototype. 
Because the IPC is aim for widespread reuse block, verification must aim for zero-defect.   

• IPCs assembling (multiple interfaces): Iteratively assemble and verify the designed or predefined 
IPCs one by one, until the whole Interface Block is verified through simulation and hardware 
prototyping. A model of an assembled Interface Block with Dummy Functions is shown as Figure 
3b.  

3)  Interface mapping: Remove the original Interface Block. Map the output of the Computation Block to the 
input of the newly designed Interface Block. Write a test bench to verify the functionality of the complete IP 
as depicted in figure 2. 

4.4. IP integration 
Synthesize the RTL code. Write the software driver and test software for functional verification of the IP 

core. Integrate the whole IP into the system by connecting it to a simplified SOC for functional verification. 
Run the test software for the entire system. Evaluate the IP function and performance to finalize the design. 

5. Case study: interface modification of M-JPEG decoder 
The motivation for this part of our work was to implement an M-JPEG decoder into a Video Transmit 

over IP (Internet Protocol) system and to analyze the usage of the methodology SIPIMM. We started this 
work from an M-JPEG decoder project [9] that was downloaded for free from OpenCores. This VHDL 
project comes with an earlier version of the bus interface OPB (On-chip Peripheral Bus) [10]. The video 
output directly connects to the monitor which does not meet our system specification. Figure 4 shows the 
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architecture of the original decoder system. The Decoder IP behaves as an OPB master on the bus and can 
fetch compressed JPEG data from Memory. The uncompressed RGB data is directly output to the Monitor. 
Three main blocks are involved: OPB IPIF is the OPB bus interface protocol. M-JPEG Decoder decodes the 
compressed JPEG data and outputs uncompressed RGB data in a sequence corresponding to a series of 
Minimum Coded Units (MCU). VGA reorders the MCU-wise data to line-wise data for output. The VGA 
Controller can be considered to support a communication protocol for the monitor interface. 

For the original project from OpenCores, the FPGA vendor and the device family was fixed to Xilinx 
Virtex II pro. This limitation matches our initial system requirements. However, due to the change of 
development environment, we were facing a communication mismatch requiring modifications of the 
interfaces from OPB to Fast Simplex Link (FSL) [10] and from VGA monitor output to Native Port Interface 
(NPI) [10]. Next parts of this section describe the work of modifying these interfaces using the proposed 
methodology SIPIMM. 

5.1. IP verification 
Firstly, the functionality of the original decoder IP was verified by simulation using the test bench 

supplied as part of the decoder project. After that, we implemented the original system of the project on our 
FPGA board. The IP functionality was verified using the original development environment of the project.  

5.2. Interface-based soft IP model 
The computation and interface boundaries were vague in the original IP structure. VGA Controller 

(interface protocol) and Reorder (computational) were blended. It represented low portability and was hard 
to migrate to other system with different functions and different bus interfaces. In order to integrate the core 
into our system and increase its portability, several modifications to its structure were performed. 

For this work, we defined the interface-based soft IP model shown in figure 5. The Reorder function was 
made into a part of the Computational Block and the VGA function was removed from the Decoder IP.  The 
Interface Block contains two IPCs for streaming of compressed and uncompressed video. There is clearly a 
distinct separation of computation from communication in the developed interface-based soft IP model 
shown in figure 2. 

5.3. Interface modification 
1)  Interface selection: According to the investigation and system specification, the FSL and NPI interfaces 
were selected to replace the OPB and VGA interfaces. The On-Chip System feeds the decoder IP with 
compressed video through the FSL interface at IPC1. The decoder IP outputs data to the system through the 
NPI interface at IPC2. The NPI interface was selected for its low latency and high bandwidth target to 
memory which is ideal for real time video communication. FSL and NPI are custom interfaces and not 
predefined, so the two IPCs must be designed. 
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Fig. 5:  Interface-based soft IP model for an M-JPEG decoder. 

Fig. 4:  Block diagram of original decoder project. 
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2)  Interface design: The FSL and NPI interfaces were designed in accordance with figure 3a. The Dummy 
Function was designed as a clock counter for verification of both interfaces. After simulation and 
prototyping of both FSL and NPI, these interfaces were merged into a single interface block in accordance 
with figure 3b.  The Dummy Functions were now selected as a copy of input data from FSL to output on NPI. 

3)  Interface mapping: The reorder function component was connected to the M-JPEG decoder component 
output. The FSL interface was mapped as an input port to the decoder function. The NPI interface was 
mapped as an output port from the decoder function. Using a debugger, we could verify an image that was 
decoded in hardware and written to the system’s memory through the NPI output.   

5.4. IP integration 
The Decoder IP shown in figure 6 was integrated with a complete SOC consisting of a MicroBlaze soft 

processor core, Memory controller, a TFT controller for video displaying and other components not shown in 
the figure. The MicroBlaze processor feeds the Decoder IP with compressed video through FSL. Decoded 
video is written directly to memory by the decoder through NPI and into the same video memory area as also 
read by the TFT controller on the Processor Local Bus (PLB) [10]. The graphics displaying for this SOC was 
visually verified running the system on a prototyping board. 

6. conclusion 
This paper presents a methodology for the modification of soft IP interfaces. This methodology is based 

on that computation is divided into functional units which have a distinct separation from communication. 
The benefit is clearly the increased communication portability for soft IP. In addition, the increased reuse of 
design works leads to a reduced work load for the IP integrator. A case study is presented to show that this 
methodology can be efficiently applied on a real-world design. There are lots of essential issues for IP reuse 
except for interface mismatch. IP design is a mixed topic with technical, financial and legal issues.  

The future work includes using the SIPIMM for more IPs, as well as extended the implementation to 
other vendor devices. 
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Fig. 6:  Block diagram of complete SOC including the updated decoder IP.

PLBMemory

MicroBlaze

TFT 

Decoder
IPPLB 

FSL 

NPI 

17


