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Abstract. The celestial navigation system is one of the important autonomous navigation systems for 
spacecraft. And the Unscented Kalman Filter (UKF), which is suitable for nonlinear system, has been widely 
applied in celestial navigation. However, when the disturbances exist and the state covariance becomes large, 
UKF will reduce the accuracy and the rapidity of convergence. This paper proposes to employ Central 
Difference Kalman Filter (CDKF) in celestial navigation with disturbances. The numerical simulation results 
show that, the navigation performance by CDF is better than UKF, with the error peak value only 30% of 
that of UKF. The further analysis also shows that CDKF has low sensitivity to state covariance and therefore 
has better robustness than UKF in the application of celestial navigation with disturbances. 
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1.  Introduction 
The celestial navigation with the star sensor and horizon sensor fixed on the spacecraft is a sophisticated 

and reliable autonomous navigation method. With the advantages of providing orbit and attitude information, 
self-contained and good suitability for space application, celestial navigation has been widely used in many 
fields [1]. The Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are the two generally 
employed filter methods to determine the orbit [2], [3].  

EKF is the mostly used nonlinear estimating method, it only uses the first order terms in the Taylor series 
expansion, however, also may introduce large estimation error and instability [4]. EKF acquires the exact 
information of model and the noise statistics and has the unavoidable error caused by the linearization. Then 
UKF was proposed by Julier and Uhlmann to solve the above problems [5]. UKF uses the true nonlinear 
model and a set of sigma sample points produced by the unscented transformation to capture the mean and 
covariance, and introduce the statistics in Kalman incursive process. UKF requires no linearization and has 
better accuracy than EKF, however, has the same calculations as EKF. But when the temporary disturbances 
exist, UKF would induce large estimate error and impact the convergence rapidity due to the wrong state 
covariance. The Central Difference Kalman Filter (CDKF) further developed uses the Sigma points as UKF, 
and expands the nonlinear model using Sterling’s polynomial interpolation method, avoiding calculating the 
partial derivative and is suitable for arbitrary functions [6]. CDKF can estimate the states even if the 
nonlinear function is discontinuous or has singular points, has better accuracy than EKF, and can reach or 
exceed the accuracy of UKF [7]. Furthermore, CDKF only employs one factor (the half step size h in central 
difference) to assure the positive semi-definition of the posterior covariance, while UKF uses three factors (α, 
κ, β) and constrains them in a range to assure it [8]. Therefore, it has less implementing complexity and 
better efficiency and filtering stability than UKF, which is the highly recommended filter [6, 9]. 
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This paper employs CDKF in the orbit determination in celestial navigation for spacecraft with 
temporary disturbances and wrong state covariance. The numerical simulations are performed using both 
CDKF and UKF, and then the accuracy and robustness are analyzed and compared. 

2.  Orbit Determination Principle by Direct Horizon  

2.1 .  Basic Principles 
The basic principle of the orbit determination by directly sensing horizon technique is presented as 

below, and the observation model is shown in Fig.1. 
 

 
Fig.1: Observation model of celestial navigation method with direct horizon 

Identifying the star (e.g. Star1 in Fig.1) using star sensor and measuring the vector of star in star sensor 
reference frame. Through the transformation matrix of star sensor, the vector of star in the inertial frame (S) 
is determined. The vertical line of satellite to earth can be measured by earth horizon sensor. Thus the star-
elevation angle is obtained as the measurement, is subtended at the spacecraft between the line of sight to the 
star and earth edge (shown as α in Fig.1) after the geometrical relations are established, the filter method is 
employed to real-time estimate the space motion states [10]. 

2.2  Motion Equations 
The motion equations used in spacecraft autonomous navigation system, based on orbital dynamics in 

the earth-centered inertial Cartesian coordinate (J2000.0), is given by the following six equations: [11] 
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where the state vector, 
T

, , , , ,x y zx y z v v v⎡ ⎤⎣ ⎦  are position and velocity of three axis respectively, μ  is the 
gravitational constant of the earth, r  is module of the satellite position vector, eR  is the radius of the earth, 

2J  is coefficient of the earth oblateness perturbations, 
T

, ,x y zF F FΔ Δ Δ⎡ ⎤⎣ ⎦  are the high grade geo-potential, 
lunar-solar perturbations, radiation pressure and other perturbations of three axis. 
Equation (1) is simplified as  

( ) ( , ) ( )t f t t= +X X w                                                                              (2) 
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where 
T

, , , , ,x y zx y z v v v= ⎡ ⎤⎣ ⎦X , 
T

( ) 0, 0, 0, , ,x y zt F F F= Δ Δ Δ⎡ ⎤⎣ ⎦w . 

2.3  Measurement Equations 
As illustrated before, the star-elevation angleis used as measurement, which has been shown in Fig.1 as α, 

arccos( ) arcsin( )eR
r r

α
⋅

= − −
s r

                                                        (3) 

Considering the observation noise, the measurement equations are 

 arccos( ) arcsin( )e

z
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r r

γ

γ
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= +

⋅
= − − +

s r                                                    (4) 

where r  is the satellite position vector in geocentric inertial coordinate system, s  is unit vector of sight 
line of the navigation star, γν  is the measurement noises. 

Then the discrete state and measurement equations are  
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3. CDKF  Algorithm  
CDKF is a sigma-point Kalman filter, employing the second order Sterling’s polynomial interpolation 

formulation for the central divided differences [12]. The algorithm steps conatin time update and 
measurement updates and are described as below.  

3.1 .  Time Update Equations 
Calculate the Cholesky decomposition of matrix 1| 1k kP − − , 

T
1| 1k kP S S− − = ; 

Set ( ) ( )T
1 1k kF s F S S x − −= +  and is approximated by ( ) T
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Complete the time updates 
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where ,i iA  is the central difference approximation of ( )2 2
iF s s∂ ∂ . 

3.2 .  Measurement Update Equations 
Calculate the Cholesky decomposition of | 1k kP −  

T
| 1k kP V V− =  

Set ( ) ( )T
1k kH s H V s x −= + , and is approximated by ( ) T
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Complete the measurement updates 
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( )( )1 k kk k k kx x L y k z−= + −  
T

1 k xzk k k kP P L P−= −  
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where ,i iG  is the central difference approximation of ( )2 2

iH s s∂ ∂ . 

4. Numerical Simulation and Results 

 4.1. Simulation Parameters 
4.1.1.  Orbit parameters  

The initial orbit elements of the spacecraft are: semimajor axis a =7136.635km, eccentricity e 
=1.809×10-5, longitude of the ascending node Ω =0, inclination i =65°, argument of periapsis ω =0, radius of 
the earth Re =6378.14km. The nominal orbit with the above elements is shown in Fig.2. 

 

 
Fig.2: Nominal spacecraft orbit 

4.1.2.   Initializations of CDKF 
The initial states are  

6
0

3 3 T

[7.1365 10 m,0,0,

         0,3.1585 10 m/s,6.7734 10 m/s]

X = ×

× ×  
Then the estimated initial values are 

6 6 6
00 0

3 3 3 T

ˆ [0.1 10 m,0.1 10 m,0.1 10 m,

                   0.1 10 m/s,0.1 10 m/s,0.1 10 m/s]

X X= + × × ×

× × ×
 

Suppose both the system noises and measurement noises are Gaussian distribution, with the covariance 
respectively as 

1 1 1 2 2 2

2 2 2 2 2 2diag , , , , ,Q q q q q q q= ⎡ ⎤⎣ ⎦  
4 2(3.4907 10 )R −= ×  

where 1q =1×10-4m， 2q =2×10-2m/s 
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The precisions of the star sensor and the horizon sensor are 3˝ (1σ) and 0.02° (1σ). Three orbits are 
employed for the navigation simulation, and the temporary disturbances occur around 1 hour later since the 
navigation starts. 

4.2. Simulation Results 
At the given simulation parameters and temporary disturbance conditions, both UKF and CDKF are 

employed in navigation and the errors of position and velocity are shown in Fig. 3(a) and Fig.3 (b) 
respectively. 

 

 
          (a)  

 
           (b) 

Fig.3: Errors of navigation filters: (a) Position errors; (b) Velocity errors 

And the stable filter errors of both UKF and CDKF without the disturbances are also provided in 
TABLE 1. 

TABLE 1: Errors of ukf and cdkf without disturbance 

Filter method position 
error/m 

velocity error 
/(m/s) 

UKF 288.7345 0.275486 
CDKF 288.7598 0.275507 

It is seen from TABLE 1 that, UKF and CDKF have the similar stable errors for both position and 
velocity. However, when disturbances exist, the estimated states by UKF have large errors, as Fig.3shows. 
CDKF has obvious better performances at both accuracy and the convergence speed, the error peak value is 
below 30% of that of UKF, and therefore has better robustness. 

The reason is analyzed as below. Both UKF and CDKF can be developed from the Gaussian filter, the 
quadrature formula of UKF applies the exact rules of the monomial, while CDKF applies the approximate 
rule, which make the integrand is represented as the multiply of two separated functions. Rather, the 
monomial applies the unchanged formulas without considering the integrand characteristics. Moreover, 
although the higher order expands are both removed in calculating the posterior covariance, CDKF has less 
absolute error of the same order term as UKF. Therefore, although CDKF has similar accuracy as UKF, it 
still has better performance.  

136



5.   Conclusions 
As the wrong state covariance will reduce the UKF estimated accuracy and the convergence rapidity, 

CDKF is employed in the celestial navigation of spacecraft. At the condition that the system has temporary 
disturbances and increased state covariance, both UKF and CDKF are applied in the navigation. The results 
show that the performance by CDKF is clearly superior to that by UKF, with the error peak value only 30% 
of that of UKF and also faster rapidity of convergence. The further analysis also shows that CDKF has low 
sensitivity to state covariance and therefore has better robustness than UKF in the application of celestial 
navigation with disturbances. However, if the disturbing environment is more complex, only CDKF is also 
hard to assure the navigation accuracy, the filters for stochastic jump systems should be combined for further 
research. 
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