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Abstract. Aiming at the performance of Micro Electro Mecha-nical Systems (MEMS) gyroscope 
influenced by random drift largely, its error compensating method is analyzed. Based on the time series 
analysis method, the raw measurement from the MEMS gyroscope is processed and modeled by the Auto-
regressive (AR) model. With the AR model, a time-varying factor adaptive Kalman filter (AKF) is designed. 
The results show that, after filtering in the case of constant and changing angular rate, the standard deviations 
are 16% and 70% of that before filtering, and the drift error can be reduced by the filter effectively. 
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1.  Introduction  
MEMS gyroscopes, with the advantages of small size, light weight and low power consumption, are more 

and more widely applicated in low cost inertial system. As the precision level of MEMS gyroscopes are not 
high till now, even in low precision measurement system, the random drift estimation and compensation of 
gyroscopes are quite necessary. And the main ways of improving the system precision are the model 
identification and filtering of the MEMS gyroscopes random drift [1]. 

The common methods of modeling of gyroscopes random drift always get high model order and large 
amount of computation, such as neural network [2] and wavelet analysis [3], which applicated in low cost 
system can hardly ensure real-time property. Based on the time series analysis theory, an AR model of 
gyroscope random drift is established. Then we process the gyroscope random drift with a time-varying factor 
adaptive Kalman filter, and the method, which is helpful in improving real-time property of the low cost 
system, is efficient with low computation. 

2. Error Model  
Modeling based on the time series analysis theory requires collecting long-term measurements, and ensure 

that the signal is zero means value, stationary and normal [4]. 

2.1. Data acquisition and processing 
In this paper, we take STIM202 gyroscope [5] as research object. Under the condition of constant 

temperature 25°C，we recorded 12 hours’ measurements of gyroscope at uniform intervals of two seconds 
while it is static and processed the output of Z-Axis. 

The raw data contains constant and random components. 
So after the mean of it has been removed, the rest is the signal of gyro random drift. During the long-term 

of sampling, the change of electrical parameters and outside environment could cause the signal to generate 
trend, so it is necessary to take a processing to ensure stationary. 
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The linear trend in the signal can be removed by the first or second order differential treatment [6], [7]. 
Fig. 1 shows the signal after it has been processed. 

 
Fig.1. Processed data of gyro random drift. 

2.2. Model Establishment 
After processed, the static data from the MEMS gyroscope turns into random error signal. 
The result of signal testing through reverse order testing method and its third-order and forth-order 

cumulants show that the signal has satisfied modeling of time series analysis theory requirements. 
Auto-Regressive and Moving Average (ARMA) Model [8] is a basic and widely used time series model, 

and it is defined as 
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Where tX  is the time series { }tX  at time t , m  and n  are the orders of AR model and Moving Average 
(MA) model, ( 1,2, , )i i mϕ = ⋅⋅⋅ is the AR parameter, ( 1,2, , )j j nθ = ⋅⋅⋅  is the MA parameter and {a }t  is the standard 
deviation of the sensor white noise. 

When 0( 1,2, , )j j nθ = = ⋅⋅⋅ , ARMA model reduces to AR model as 
 1 1 2 2t t t t n t nX a X X Xϕ ϕ ϕ− − −= + + + ⋅⋅⋅+                                                       (2) 

ARMA model and AR model have different characteri-stics in auto-correlation function (ACF) and partial 
auto-correlation function (PACF). In AR model, the ACF is ‘tailed’ and the PACF is ‘truncated’, while in 
ARMA model both of ACF and PACF are ‘tailed’. Therefore, the model of signal can be identified by the 
characteristics of its ACF and PACF. The ACF and PACF of gyro random drift signal are presented as figure 
2, which shows that the PACF cuts off whereas the ACF has a jagged exponential decay. Therefore the AR 
model is adopted to model the gyro random drift signal. 

After the parameters of each low order model have been estimated by least-square method, the order 
determination test of the AR model can be conducted via Akaike Informa-tion Criterion (AIC) and Bayesian 
Information Criterion (BIC), which can be normally written as  

 2( ) ln 2aAIC p N pσ= +                                                                         (3) 
 2( ) ln lnaBIC p N p Nσ= +                                                                    (4) 

Where p  denotes the order of model, N  denotes the number of Sampling points and 
2

aσ  denotes is the 
variance of residual ta . 

And the test result is presented in Table 1. As shown, by increasing the order of the AR model, AIC and 
BIC values don’t decrease remarkably. Although those values are the lower the better, the amount of 
computation raises with the cubic of the order of AR model in the system. To further improve the system real-
time property, the AR (1) model is used for the random drift error model. 
After the Model plan has been finalized, it is necessary to perform the applicability test, testing whether {a }t  
is white noise. By calculating, the one-step auto-correlation coeffic-ient of a t  is ,1 0.078aρ =  and the two-step 
cross-correlation coefficient between a t  and tX  is ,2 0.0095aXρ = − . Both of the coefficients approach zero, so 
{a }t  is considered to be white noise and the model is applicable. 
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Fig.2. Value of ACF and PACF. 

Table 1: Value of AIC and BIC of Models （×105） 
 Model 

Criterio
n AR(1) AR(2) AR(3) AR(4) 

AIC -4.3560 -4.3562 -4.3564 -4.3564 

BIC -4.3559 -4.3560 -4.3561 -4.3561 
 

The model is expressed in the form of 
 1 t t tX X aϕ −= +    2~ (0, )t aa NID σ                                                           (5) 

3. Filter Design 
After the drift error model has been determined, we choose Kalman filer (KF) [8] to compensate the drift 

error. The linear state equation and measurement equation are given as follows 
 

, 1 1 1 1k k k k k kX X Wφ − − − −= + Γ                                                                     (6) 
 k k k kZ H X V= +                                                                                  (7) 

Where kX  is the system state vector at time kt , , 1k kφ −  is the state transition matrix between time point 1kt −  
and kt , 1k −Γ  is the system noise distribution matrix, kH  is measurement observation matrix, 1kW −  and kV  are 
the random error of system and measurement and they are per the following error statistics 

 [ ] 0, [ , ]k k j k kjE W Cov W W Q δ= =                                                               (8) 
 [ ] 0, [ , ]k k j k kjE V Cov V V R δ= =                                                             (9) 

 [ , ] 0k jCov W V =                                                               (10) 
Where kQ  and kR  are variances of kW  and kV . 
The regular KF established on this basis can effectively reduce the random drift error of gyro in the static 

or constant angular rate state, but in the state of changing angular rate the KF doesn’t work well. 
Through the analysis we learned that the filter model changed while the angular rate was changing. The 

more dramatic changes in angular velocity, the applicability of the filter model is poorer, causes the greater 
system error. But the direct reason for this is that the old measurement value influences the estimate of the 
current too much. Increasing the gain of current measurement value in the state estimation equation is an 
effective mean to solve this problem.  

Based on the drift model before, AR(1) model takes the place of KF state equation and variance of 
residual kQ  takes the place of 

2
aσ . kH  is set by 1. The AKF multiple update steps may be performed 

One-step predicted state estimate 
 

/ 1 1
ˆ ˆ

k k kX Xϕ− −=                                                                    (11) 
Updated state estimate 

 
/ 1 / 1

ˆ ˆ ˆ( )k k k k k k kX X K Z X− −= + −                                                              (12) 
Filter gain 

 1
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− −= +                                                                (13) 
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One-step predicted estimate covariance  
 2

1
2

1/ akkkk PsP σϕ += −−
                                                                     (14) 

Updated estimate covariance 
 / 1( )k k k kP I K P −= −                                                                      (15) 

A factor ks  is added into recursive equation of regular KF. The value selection of ks  is not only to be able 
to reduce the error under the condition of changing angular rate, but also to ensure the accuracy in the constant 
angular rate state, and expressed as follows 

 0

0
k

k

s ω
ω ω

=
− Δ                                                                   (16) 

Where kωΔ  is the first order differential of gyroscope measurements at the current moment, 0ω  is the 
reference value obtained by experiments. 

In the condition of constant angular rate, kωΔ  approaches zero and ks  approaches 1, the AKF doesn’t 
change too much from KF. When the angular rate is changing, ks  will adjust the filter. 

4. Simulation and Experiment  

4.1. Constant angular rate experiment 
In order to verify the effectiveness of the model and filter, use both regular KF and AKF methods to 

process the static data at first. We set 0.1374ϕ =  and 0
ˆ 0X = , 0P  [10] and kR  [11] are set by 10 times of 

standard deviation of raw data and one tenth of variance. Filtering effect is shown in figure 3 and figure 4, and 
the error reduces obviously. 

The standard deviation of error before and after filtering is shown in table 2. The result shows that the 
filter and model established in the static condition are reasonable. Compared with the regular KF, the accuracy 
of AKF doesn’t reduce.  

Under the condition constant angular rate, we get the same result as it in the static condition. After 
processed by the two kinds of filter, the standard deviation of error is reduced to 16% of the raw data’s. 
Because of the limited space, the detail description of the experiment is omitted. 

4.2. Changing angular rate experiment 
In the same environment condition, we take out a part of raw changing angular rate data (figure 5) from 

the MEMS gyroscope for experiment. 
Filtering effect is shown in figure 6 and figure 7. The result shows that filtering changing angular rate data 

with the regular KF get poor effect and the error value is changing with the angular rate changing, while the 
error of AKF isn’t influenced by angular rate changing almost. The standard deviation of error before and 
after filtering in the table 3 shows that AKF can reduce the random drift error under the condition of changing 
angular rate effectively. 

From above, it shows that based on the AR model before, regular KF just can reduce the random error in 
the case of constant angular rate, while AKF can not only ensure the accuracy in the constant angular rate 
condition, but also improve the filter effect when angular rate is changing. Thus it can be seen that this 
algorithm worked well. 

 

Fig.3. Kalman filter result of static experiment. 

 

Fig.4. Adaptive Kalman filter result of static 
experiment. 
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Table 2: Standard Deviation of Error In Static Experiment 
 Raw Data Regular 

KF AKF 

Standard 
deviation 

(deg/s) 
0.1285 0.0198 0.0198 

 

 
Fig.5. Changing angular rate data of gyro.  

Fig.6. Kalman filter result of changing angular rate 
experiment.

 
Fig.7. Adaptive Kalman filter result of changing angular rate experiment. 

Table 3: Standard Deviation of Error In Changing Angular Rate Experiment 
 Raw Data Regular 

KF AKF 

Standard 
deviation 

(deg/s) 
0.1285 0.2044 0.0892 

5. Conclusion 
In this paper, we analysis the MEMS gyroscope output raw date, extract the random drift signal based on 

requirements of time series analysis theory and establish an AR(1) model for filter. The results of experiments 
show that in the constant angular rate case, both regular KF and AKF have good performances, but when the 
angular rate is changing regular KF loses efficacy, while AKF still performs well and the standard deviation 
of drift error reduces by 30%. The AKF algorithm based on AR model, which is simple, effective and high 
real-time property, has some practical value in MEMS gyroscope-based low cost integrated navigation system. 
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