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Abstract. Hurst parameter estimation accuracy is very important in DDoS attack detection model based on 
traffic self-similarity changes. If the estimation accuracy is poor, the undetected and false detection should 
happen. This paper proposed the fractional Fourier transform method to estimate Hurst parameter. Combined 
with the idea of regression diagnosis and change point analysis, an effective, adaptive estimator of Hurst 
parameter based on weighted least squares was presented. We used FGN data set to verify our idea. The 
experimental results show that our method has high estimation accuracy, and the ability to select the optimal 
scale interval adaptively than the existing common method. So the method can improve the detection 
performance of DdoS attacks effectively. 

Keywords: DdoS attack detecting; fractional fourier transform; hurst parameter; self-similarity; weighted 
least squares 

1. Introduction 
Distributed denial-of-service attack (DdoS) [1], [2] is an immense threat of the Internet security. 

Researchers have shown that network traffic has self-similarity and correlation [3], [4]. DDoS attacks would 
affect the self-similarity of network traffic and change the Hurst parameter value which characterizes the 
burst nature of the network traffic. Typically, the network traffic Hurst parameter is between 0.5 to 1, the 
greater the Hurst parameter is, the self-similar (long correlation) of the network is much higher, and the burst 
is stronger. When DDoS attack occurs, the attack packets reduce the self-similarity of the network and cause 
Hurst parameter lower. The traffic tends to Poisson distribution if it blocked completely with the Hurst 
parameter value become 0.5. Typically, many defense mechanisms have been proposed to combat the 
problem, such as Variance-Time(V-T), Rescaled Range(R/S), Periodogram methods, Whittle methods, 
wavelet analysis and so on[5],[6]. 

In recent years, the fractional Fourier transform (FrFT) [7] has been widely applied in the field of signal 
processing and communications technology with its time-frequency rotation characteristics. In 1996, Ozaktas 
et al. proposed a discrete algorithm with low computation [8]. Fractional Fourier transform attracted the 
attention of scholars in the field of signal processing [9-12]. YangQuan Chen et al. analyzed the self-
similarity of the network Based on FrFT [10]. This paper proposed a DDoS attack self-adaptive detecting 
method based on FrFT. The experimental results reveal that our method is reliable and accurate, and can 
select the optimal scale interval adaptively than the existing common method. 

The paper is organized as follows. In Section 2, we derive the definition of the fractional Fourier 
transform and Hurst parameter estimation based on FrFT. Section 3 presents the self-adaptive detection 
method in FrFT domain. Section 4 presents some of the experiment to illustrate the benefits of the new 
methods. Conclusions are drawn in Section 5. 

2. FrFT and Hurst Parameter Estimate  
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The fractional Fourier transform is the promotion of the classical Fourier transform. The fractional 

Fourier domain can be understood as a unified time-frequency transform domain [7]. 

The definition of FrFT[7] of a signal ( )x t is ( ) ( ) ( ) ( , )a a aX u F u x t K t u dt
+∞

−∞
= = ∫  ,Where, 

( cot csc cot )( , ) ( cot ) i t ut u
aK t u i e π α α αα − += −

2 221 ( nα π≠ ),     ( , ) ( )aK t u t uδ= −   ( ( )nα π= ±2 1 ) 

n∈Z， / 2aα π= ， a  is the order of the fractional Fourier transform. When a = 1, FrFT is the 

standard Fourier transform. FrFT is abbreviated as Fa. Its computational complexity is O(NLogN) [9,12]. 

Using discrete wavelet transform and multi-resolution analysis method [13, 14], we can get the Hurst 
parameter estimating equation based on FrFT as  

( ) (2 1) tanG j H j cons t↔ + +  

3. Self-Adaptive Parameter Estimation 
Literature [10] use local analysis method in the fractional Fourier domain based on one-dimensional 

weighted linear regression. We use one-dimensional weighted estimation method of least-squares regression 
just like literature [15].  

As for random variables , , 1, ...,j jY x j J= ，Given regression model 0 1j j jY xβ β ε= + +� �� ，where 

( ) ( ) 20, /j j jE V ar Nε ε σ= =� �  . In matrix form, this equation can be written as 

= +�� �y X β ε                                                                  (1) 

where �X   is a  2J × Matrix. Let { }1,..., JW diag w w= , where j jw N= , Let the following variables: 
1 / 2 1 / 2 1 / 2, ,�� �y W y X W X Wε ε= = = , we get:  

 = +y X β ε                                                                  (2) 

Where ( )20 , Iε σ∼ . Thus, the weighted least-squares estimation model (1) is equivalent to the ordinary 

least-squares estimation model (2). Let b  as least-squares estimation of β  in Eq. (2). We get unbiased 

estimate of b as: 

( ) 1ˆ −
= =T Tb X X X y H y                                                        (3) 

Let je  as j  Residuals, we get 

ˆˆ T
j j j j je Y Y Y x= − = − b̂                                                           (4) 

where ˆ
jY  is the regression value of jY . 

The choice of the scale interval 1 2[ , ]j j  has a great influence on the fitting result, we use variance 

analysis method based on the ideas of change point analysis [16], [17], using different scales range to 

estimate Hurst parameter fitting degree, thus adaptively selects the optimal range of scales. 

Theorem 1. jx represents a j  row vectors of X , ( )b j  denotes the least squares estimation of β  in 

formula (2) after row j  is removed. The relationship between b  and ( )b j  are summarized as: 
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It is used as a regression diagnostic tool for the detection variable j  , thus we can judge whether it affect the 

estimated results of the regression model. 

Theorem 2. Define the residual sum of squares: 
( )2ˆ

i i
i

SSR Y Y= −∑
. Let 

2s  as the general estimation 

of 
2σ , 

2 ( )s j  is the estimation of 
2σ  in formula (2) after row j  is removed. And, define 

( )
2

2

1

1
1 1

J
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i i
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Theorem 1 and Theorem 2 compose the foundation to examine the statistics when choosing the region of 

the scale. We may regard the problem as choosing a child model that presents lots of linearity among the 

regression models. Therefore, with regard to each child model whose index label is j , the problem can turn 

to checking up the hypothesis testing 

  0 1( ) : tan , ( ) : .H j EY cons t H j EY linear= =  

Assuming ( )jSSR old  represents the residual squares sum of null hypothesis, and ( )jSSR new  

represents the residual squares sum of the alternative hypothesis, we may carry through an optimal 
examination using the statistical parameter 

( )
( )

( )
( ) ( )

( )
2

2

ˆ( ) ( ) / 1
( ) 1, ( ) 2

( ) / ( ) 2 ˆ / ( ) 2

J
ij j i j

J
j i ii j

Y YSSR old SSR new
T j F N j

SSR new N j Y Y N j
=

=

−−
= = −

− − −

∑
∑

∼ . 

Thus, we can get the optimal region of the scale 1 2[ , ]j j , where
{ }1 1

arg min ( )
j

j T j
≥

=
, 2j J= .  

4. Experimental Results and Analysis 
We use FGN sequence as the original data to estimate Hurst parameter. With sequence generation 

algorithm based on FFT from Stilian Stoev[18],  we get FGN sample sequences with different Hurst index 
values from 0.55 to 0.95,interval of 0.05. The length is N = 216 = 65536. 

4.1. Optimal transform order selection 
In order to obtain the optimal order of the transform, we use different FrFT order to estimate the Hurst 

value of the FGN sequence, and calculate each estimated deviation compared to the actual value of the 
statistical variance, then select a  as the most optimal FrFT order where the mean of statistical variance is 
least. Figure 1 shows the variances of Hurst parameter estimations with different FrFT orders for FGN. Let 
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ˆ
iH  as the estimated Hurst value, iH  as the real Hurst value, andl

2

*

1 1

ˆ1arg m in
N

i i

i i i

H Ha
N H≥ =

⎧ ⎫⎛ ⎞−⎪ ⎪= ⎜ ⎟⎨ ⎬
⎝ ⎠⎪ ⎪⎩ ⎭

∑ , the 

statistical variance is the least whenl* 0.6a = . So, we can select 0.6 as the optimal transform order. 
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Fig. 1: The variances of Hurst parameter estimations with different orders of FrFT for FGN 
(a)H=0.55, (b) H=0.6, (c) H=0.65, (d) H=0.7, (e) H=0.75, (f) H=0.8, (g) H=0.85, (h) H=0.9 and (i) H=0.95 

4.2. Adaptive selection of the scale interval 
Table 1 and Table 2 show the estimated Hurst parameter values and corresponding goodness-of-fit value R 

of the FGN sample sequence with H=0.55 and 0.95, respectively. That with "__" and bold logothe interval is 
our adaptive selected result. We can see, different scale interval has a great influence on the accuracy of the 
estimated Hurst parameter, the optimal scaling interval corresponding to the H estimate closest to the true 
value of H, and the corresponding goodness-of-fit value R minimum. It shows a linear relationship between 
the random variable regression models to achieve the best in the optimal scale interval, so the scale interval 
selection method is in line with the principle of optimality. 

Table 1: Hurst parameter estimation and goodness of fit for different scale interval(H=0.55) 

 [j1,j2] [1,16] [2,16] [3,16] [4,16] [5,16] [6,16] [7,16] 
H 
R 

0.529 
0.00137 

0.597 
0.00126 

0.513 
0.00098 

0.519 
0.00331 

0.613 
0.00015 

0.605 
0.00026 

0.552 
0.00009 

Table 2: Hurst parameter estimation and goodness of fit for different scale interval(H=0.95) 

 [j1,j2] [1,16] [2,16] [3,16] [4,16] [5,16] [6,16] [7,16] 
H 
R 

0.961 
0.01351 

0.973 
0.03786 

0.984 
0.00926 

0.958 
0.00508 

0.953 
0.00002 

0.967 
0.00496 

0.935 
0.00665 

4.3. Accuracy analysis 
Table 3 shows the Hurst parameter estimation results of the FGN sequence by the commonly used 

estimation method, Literature [10] method and the adaptive method proposed in this paper. It also gives the 
optimal scale interval [J1, J2] and the deviation between the actual H value and the estimated value. Because 
sample sequence length N = 216 = 65536, so the largest scale in the adaptive method order is 16. As can be 
seen from the table 3, in FrFT adaptive method, and in the range of optimal scaling, the estimated precision 
of the results is better than the other methods. 
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Table 3: Hurst parameter estimation with various methods 

H 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 
V-T 
R/S 

Wavelet 
FrFT 

0.481 
0.556 
0.566 
0.584 

0.540 
0.614 
0.607 
0.628 

0.596
0.649
0.664
0.671

0.715
0.698
0.695
0.682

0.767
0.729
0.756
0.732

0.808
0.811
0.806
0.809

0.837 
0.844 
0.878 
0.835 

0.844 
0.897 
0.942 
0.873 

0.923 
0.907 
0.984 
0.939 

FrFT Adaptive 
[j1,j2] 

|Htrue-Hestimate| 

0.552 
[7,16] 
0.002 

0.604 
[7,16]
0.004 

0.652
[5,16]
0.002

0.698
[6,16]
0.002

0.750
[6,16]
0.000

0.805
[5,16]
0.005

0.847 
[7,16] 
0.003 

0.895 
[7,16] 
0.005 

0.953 
[5,16]
0.003 

5. Summary 
This paper introduced the fractional Fourier transform to DDoS attack detection, it make use of the high 

precision of the Hurst parameter estimation in fractional Fourier transform domain. Combined with the idea 
of regression diagnosis and change point analysis, the weighted least-squares regression model in fractional 
Fourier domain was presented. The experimental results show that the method has high estimation accuracy, 
and the ability to select the optimal scale interval adaptively than the existing common method. So it can 
effectively reduce the DDoS attacks detection of false negative and false positive rate. We will focus on the 
fast FrFT domain detection algorithm for DDoS attack in future studies. 
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