
Research on Construction Method of Association Rule Mining Based
on the Hash-tree

Chen Feng+, Jia Yuanhua,Niu Zhonghai and Yi Huixin

School of Traffic and Transportation Beijing Jiaotong University

1416Room,3#Building,18#Yard,Jiaoda Dong Road, Haidian District

Beijing, P.R.China;

Abstract—Association rule is one of the fundamental methods of data mining, the hash-tree is an
important data structure that used to mining frequent itemset by homo-Apriori algorithms. Because the hash-
tree can’t be built successfully one-time, this paper proposes static and dynamic two hash-tree construction
methods. Both methods can not only determine the hash table size, hash functions and the number of itemset
in the leaf nodes, but also guarantee to build a hash-tree successfully one-time in any case and prove the
correctness of the proposed method.

Keywords-association rule; hash-tree; frequent itemset; data mining; database;Apriori algorithm

1. Introduction
Data mining is an effective way to solve the data-rich and knowledge-poor problem. Its essence is a

process of extracting implicit, unknown and potentially useful information from the database, which is
recognized as a new field of database research. Promoting the rapid development of data mining is a problem
of decision support faced by large retail organizations. The development of bar code technology has made the
supermarket to collect and store huge amounts of sales data. Data mining analyze large amounts of data,
obtain the relationships, rules, trends, and other patterns, and support to make decisions.

Association rule mining is one of the most active research methods of data mining, which was put forward
by Agrawal[1-2], etc. The initial motive is directed at the shopping basket analysis issues, its goal is mining
associations rules from a large number of goods. According to the rules supermarkets can arrange for the
placement of goods, and improve the effectiveness of supermarkets. These rules describe the customer
behavior patterns, can be used to guide businesses to scientifically arrange purchase, inventory and shelf
design, etc.

The research, finding frequent itemsets / mode, is the core of association rules[2-4], sequential patterns[5],
causality[6], the largest model[7], multi-dimensional patterns[8]. It has become hot spots in the field of data
mining, and there are many effective mining algorithms[4,5,9]. In these mining algorithms, most of them like the
Apriori algorithm[2] approach for frequent itemset mining and update[10]. The common feature of homo-
Apriori algorithm: In order to identify all frequent k-itemsets that contain k (k > 1) items, first, generate
candidate k-itemsets that contains frequent k-itemsets, and save it in a hash-tree, then scan the database and
determines each candidate k-itemset frequent in the library, and finally obtain frequent k-itemsets from
candidate itemsets under the pre-specified minimum frequent threshold concentration.

+ Corresponding author.
 E-mail address: 08114212@bjtu.edu.cn

2010 3rd International Conference on Computer and Electrical Engineering (ICCEE 2010)
IPCSIT vol. 53 (2012) © (2012) IACSIT Press, Singapore

DOI: 10.7763/IPCSIT.2012.V53.No.2.72

Before mining process, in order to ensure the hash-tree constructed successfully and mining process go
smoothly, we should determine the appropriate hash function, hash table size and the number of items stored
by leaf nodes. However, as far as I know, there have been no studies addressing this important issue. In this
paper, there are static and dynamic two hash- tree construction methods to solve the question. Both methods
ensure the successful construction of the hash-tree one-time, and determine the hash table size, hash functions
and the simplification of the number of itemset in the leaf nodes. Static method is simple to use, while the
dynamic method use effective mapping approach, which significantly saves the cost of system resources when
building a hash-tree.

In the following section 2, descript the mining of frequent itemsets, then introduce the generation of
candidate itemsets and the construction of the hash-tree in Apriori- algorithm[2], and analyze the problem. In
the section 3 details methods of static and dynamic achievements. Finally, conclusions are given in Section 4.

2. Related research

2.1. Mining frequent itemset
I={i0, i1, …, im－1} is a collection contains m different items. T is a transaction that is composed by

different items in I. D is a database contains different transactions. Itemset is a collection formed by different
items, while K-itemset is a collection formed different items. Transaction T contains itemset X, if and only if
X⊆T. Frequency of occurrence for itemset X in D, δx , define as the number of X in D, that is , the number of
transactions in D that contains Itemset X. We pre-specified a minimum frequent thresholdξ. If δx ≥ ξ, claim
itemset X is frequent itemset or frequent k-itemset when it has k items. All the frequent k-itemsets in D denote
Fk.

With the given minimum frequent threshold ξ and database D, mining frequent itemsets is to find out the
itemsets which frequency of occurrence is greater than or equal to ξ. To simplify the discussion, in the case
that does not lead to ambiguity, items in I are expressed by the subscript. For example, {i2, i8} is {2, 8}. In
addition, in the study of frequent itemsets, some itemsets have the same items but different sequence because
they have the same frequency of occurrence, such as δ{2,8}=δ{8,2}. In this paper we only think about the
ascending order.

2.2. Generation approach of candidate itemsets
All the homo-Apriori algorithms use “generation-test candidate itemset” repeatedly to find out the

frequent itemsets in database D. Let’s take Apriori algorithm for example.
When the first time (cycle 1) it scan database D, count each item’s frequency of occurrence and obtain all

the frequent 1-itemsets, F1. Next, use F1 as the seed itemset, generate the candidate itemset(C2) that include
all the frequent 2-itemsets in the cycle 2. Then scan database D to gain the frequency of occurrence for the
candidate itemset(C2) . After that we can have F2. Cycle like this until there is no candidate itemsets
generated or frequent itemsets received. Ck (k>1) generate through the connection and cut off processing on Fk

－1 p and Fk－1 q. Its generation is as follows [2],first connection step:

Insert into Ck
Select p.item1, p.item2, ..., p.itemk－1, q.itemk－1
From Fk－1 p, Fk－1 q
Where p.item1 = q.item1, ..., p.itemk－2 = q.itemk－2, p.itemk－1<q.itemk－1

Generate Ck. Then remove all the candidate itemsets that include non-frequent (k－1)-itemset from Ck.

2.3. Construction and structure of the hash-tree
Except cycle 1, in each cycle, Apriori algorithm store a hash-tree in a candidate itemset, which can help us

accelerate the search speed and calculation frequency of occurrence. A hash-tree is composed by the root node,
internal nodes and leaf nodes. The depth of the root node is 1. All the candidate itemsets save in leaf nodes,
and each leaf node can contain several candidate itemsets. Each internal node in the tree contains a hash table,
and internal node in depth of d belongs to the hash table, each point to an internal node or leaf node in depth

of d+1. In the initial of building a hash tree, all the nodes are the leaf nodes. When insert a candidate k-itemset
X={x1, x2, …, xk} into the hash-tree, from the root node down until find out a leaf node. In the internal node in
depth of d, determine the internal node or leaf node in depth of d+1, through hashing the d item xd（1≤d≤k）
in the itemset by hash function. When the number of the candidate itemsets, which are inserted into a leaf
node, exceeds a threshold, the leaf node is converted to an internal node. Figure 1 shows 6 candidate 3-
itemsets inserted into the tree. In the figure, N (xd) is the subscript of item xd in the collection I. For example,
insert the candidate itemset {i1,i3,i4}(collection {1,3,4}). Owing to f(i1)=1,the item 1 in the root node point to a
internal node, then the second hash item gain f(i3)=3. Item 3, the internal node in depth of 2, point void
address, the candidate itemset can be stored in it. So the itemset {1,3,4} is inserted into the leaf node pointed
by item 3 instead of hash i4 .

Fig.1. Sample hash tree

Hash function：f(xd)= N (xd);
Hash table size is 4,the number of itemsets in the leaf node
is I,I={0,1,2,3},the number of all possible 2-itemsets is 16.

2.4. Problems
In general,the maximum tree depth can not exceed k for k-itemset hash-tree. Otherwise, itemset inserting

will fail, because in the k-itemset there are at most k items that are used to determine branches of hash table
with different depth. Take figure 1 for example, if we insert (1,6,7) into the hash-tree, the construction will fail.
For the final positioning of the leaf node has stored the (1,2,3) and (1,2,7), the number of itemsets has reached
the threshold laid down in 2 and tree depth also has reached the limit value , so it cannot be converted to an
internal node. This situation is called insertion overflow of a candidate itemset. If insertion overflow occurs, it
cannot guarantee that the frequent itemsets mining process success. This paper gives two solutions in the next
section.

3. Construction approachs of the hash-tree

3.1. Construction of the static hash-tree
In the process of mining frequent itemsets, different minimum frequent thresholds will lead to the

generation of different candidate itemsets. To ensure the process of data mining goes smoothly, the
construction of the hash-tree should adopt the worst situation following. Make sure that all the itemsets exist
should be inserted into the hash-tree. And there is a most intuitive and simple approach,each item in I should
has a specific non-repetition of the hash value. The arbitrary two different itemsets in I are impossible to have
the same hash value in the internal node in the same depth, and they will be stored in different leaf nodes. As
theorem 1 following:

Theorem 1: There is a itemset I, I={i0, i1, …, im－1}, which is made up by m different item. There are k
different k-itemsets in I, X={x1, x2,…, xk}. Build the hash-tree of k-itemsets by principle of Apriori algorithm.
The size of hash table is m , hash function is f(xd) = N (xd),xd is the d item in k-itemset and N (xd) is the
subscript of xd in I. So each leaf node in the hash-tree can only store a k-itemset to ensure no overflow when
build a hash-tree.

Proof: Assume that overflow happened in the process of building the hash-tree, there must be two
different k-itemsets, X={x1, x2,…, xk} and Y={y1, y2,…, yk,},which are inserted into the same leaf nodes.
According to the approach of building hash-tree, in the internal node that has the same depth with that from
the leaf node to the root one, the hash values of X and Y in the internal node , f(xd) and f(yd), must be equal: N
(xd)=N (yd). Accordingly, xd and yd are the same item in I. Therefore,X and Y are the same k-itemset. It is
contrary to the assumptions of that X and Y are different k-itemsets. So the proposition is proved.

Figure 2 give us an example. I={0, 1, 2, 3}. All the 2-itemsets are inserted into the hash-tree built through
the approach in Theorem 1, with which we can prove the correctness of Theorem 1.

Fig.2. The example of all 2-itemset inserted into hash-tree

Hash function：f(xd)= N (xd)；
The size of the hash table is 4, the number of items in a leaf node is 1, I={0,1,2,3},the number of all the

possible 2-itemsets is 16.
In Theorem 1, there is no limit of the order of the items in itemset X, which belong the normal situation.

According to Theorem 1, we can reason as follows:
Reasoning 1：Based on the Theorem 1, if we define the k-itemset stored in hash-tree as ascending k-

itemset composed by different items in I, insertion overflow won’t appear through the same construction
approach.

As the size of the hash table in this method is determined by the number of items in database, it is called
static construction of hash-tree. There are many advantages of this method. It can ensure that the hash-tree is
built successfully one-time with no overflow. Leaf nodes store a small number of items, which make selection
process more efficiently. The size of hash table and the hash function can be determined simply. However, it
waste a lot of system resources to build a hash tree. The items in the candidate itemsets are only a part of that
in I, and the number will reduce drastically with increase of the length of frequent itemsets. For example a
database contains 1000 different items, if only 10 items are in the candidate itemset in a cycle, the hash table
will have 99% of void items. As follows, a dynamic method will proposed to solve the problem.

3.2. Construction of the dynamic hash-tree
From the discussion of the static method, only those items which are from the candidate itemsets Ck

hashing into hash table are used. When we build a hash-tree, if the size of the hash table isn’t less than the
number of items in Ck in which items will be stored into the hash-tree by the suitable approach, according to
Theorem 1 and Reasoning 1, we can ensure to build the hash-tree successfully one-time.

Analyzing the generation of the candidate itemsets in section II.B, we can see that Ck is generated by the
connection and pruning process on Fk-1 and the number of items in Ck is less than that in Fk－1. Therefore we
can use the number of items in Fk－1 as the size of the hash table, and get the value when we get Fk－1. To
ensure that the items in Fk－1 are hashed in different item in the hash table, we’ll use the following mapping
approach for building the hash-tree:

• Array the different items in Fk－1 according to the ascending order of the subscript in I. And set the new
number from 0 to re-start with integer. For example,F2 ={i3, i5,},{ i3, i7},{ i3, i9},{ i5, i7}, { i7, i9}}will
be arrayed as：i3, i4, i5, i7, i9 and set as 0, 1, 2, 3, 4.

• We can use a mapping table show the mapping relation of them. The mapping table of above simple
as follows:

Items in Fk－1 i3 i4 i5 i7 i9

New number 0 1 2 3 4

After completion of the mapping process, when building the hash-tree, we replace items in candidate by
new numbers and insert into the hash-tree. When the transaction compute out the frequency of occurrence of
the candidate itemset in the hash-tree, the related items should replace by new number and insert into the
hash-tree to compute. When continue the step above, the items, which appear in the mapping table, will be
ignored, for they are useless on the computing of the frequency of occurrence. Finally, after the computing
and the output of Fk-, then use the mapping table to map back the original item.

According to Reasoning 1, we build a tree by the method above, which can guarantee no overflow. This
method can reduce system resource, because there are few void items in hash table. Like the example above,
there are 1000 items in I. Compared to the static method, when we build an internal node, the space will be
allocated 5 units instead of 1000, only 5‰.

3.3. Comparison of the two methods
Both the two methods have their own advantages and disadvantages. Their common characteristics are:
• It is simple and practical to determine the size of the hash table and the hash function. Do not need test

and adjustment for different mining process.
• In order to make the selection process quickly and efficiently, we can set a minimum value that limit

the number of itemsets in the leaf nodes.
• For all cases of the selection process of frequent itemsets, the method can guarantee to build a hash-

tree successfully, and avoid the mining processing fail caused by the failure of the construction of the
hash-tree.

In addition, each of them has their own different characteristics, made them can apply to different
situations of the mining process.

In the static method, the size of hash table is determined by the number of items in the database. When
build or process a tree, we can use the subscripts in I simply and quickly. The disadvantage is that too many
items in the hash table is avoid, wasting a lot of system resources. Therefore, the method applies to smaller
database, in which the number of different items is small. And there are enough system resources in database,
make sure we have enough memory for the mining deal with frequent itemsets. This is a method of space-for-
time.

Compared to the static method, according to items that are needed in process of data mining, the dynamic
method can change the size of hash table. This reduced system resources for building the hash-tree. And
improve the efficiency of items in the hash table. But it must create another mapping table corresponding with
the hash table, which make additional resources. This is a method of time-for-space. It is suitable for large
database, in which the number of different items is large. And there are not enough system resources and
available memory for the process of frequent itemsets mining.

4. Conclusion and Discussion
With the development of society, data mining is increasingly widespread and profound on the application

in the field of finance, sales and service industries. Association rule is a kind of basic approach for data
mining, and arouse more and more concern and attention. In the view of problems that cause by the current
wide use of homo-Apriori frequent itemsets in hash-tree construction. Two hash-tree construction methods
were raised, the static and dynamic, which can guarantee to build a hash-tree simply and successfully one-
time. This paper described in detail both static and dynamic methods, and proved the correctness. On the basis
of analysis of their respective characteristics, advantages and disadvantages, gave their respective treatment
conditions for mining.

5. Acknowledgment
The work is supported by Chinese National High-Tech Research and Development Plan (“863 Program”,

2007AA11Z213) under the title Dynamic Information Sharing Platform and Coordinated Control Technology
Research for Freeway and related Urban Expressway.

6. References

[1] R Agrawa,l T Imielinsk,i A Swam.i DatabaseMining:A Performance Perspective[J]. IEEE Trans Knowledge and
Data Eng, 1993, (5): 914-925.

[2] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. In VLDB’94, pp. 487-499.

[3] X. P. Du, K.Kaneko, and A. Makinouchi. Fast Algorithm to Find Frequent Itemsets for Mining of Association
Rules. In IS’00, pp. 408-414.

[4] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation. Proc. 2000 ACM-SIGMOD
Int. Conf. on Management of Data, Dallas, TX, May 2000, pp. 1-12.

[5] R. Agrawal and R. Srikant. Mining Sequential Patterns. In ICDE'95, pp. 3-14.

[6] C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable Techniques for Mining Causal Structures. In VLDB'98,
pp. 594-605.

[7] R. J. Bayardo. Efficiently Mining Long Patterns from Databases. In SIGMOD'98, pp. 85-93.

[8] M. Kamber, J. Han, and J. Y. Chiang. Metarule-guided Mining of Multi-dimensional Association Rules Using Data
Cubes. In KDD'97, pp. 207-210.

[9] J.S. Park, M.S. Chen, and P.S. Yu. An Effective Hash-based Algorithm for Mining Association Rules. Proc. ACM
SIGMOD Int. Conf. Management of Data, San Jose, CA, May 1995, pp. 175-186

[10] X. P. Du and A. Makinouchi. Ameliorated Algorithm to Maintain Discovered Frequent Itemsets. Res. Rep. ISEE
Kyushu University, Vol.6, No.1, March 2001, pp. 19-24.yushu University, Vol.6, No.1, March 2001, pp. 19-24.

