
Design and Implementation of Lookup Table in Multicast Supported

Router

Wenmin Hu
a,
*, Hengzhu Liu

a
,Zhonghai Lu

b
, Axel Jantsch

b

aSchool of Computer, National University of Defense Technology, Chansha, P.R. China
bRoyal Institute of Technology, Stockholm, Sweden

Abstract. In this paper, a design and implementation of a lookup table are proposed, which facilitate the

multicast supporting in Network-on-Chip (NoC). Our lookup table allows setting or clearing some bit in a

table entry, clearing table entry and reading the content from the table. Base on this, our scheme could setup

any-shaped multicast path by combining the sub-path incrementally.

Keywords: Network-on-Chip, multicast

1. Introduction

Since billions of transistors could be integrated in one die, multi-core architectures have become the

mainstream for designing of the multiprocessor System-on-Chip (MPSoC). The communication becomes a

bottleneck in improving the performance for MPSoC. Network-on-Chip (NoC) [1], [2], [3], [4], [5]emerged

as a promising approach to solve the global interconnect problems of MPSoC.

As an important communication mode existing in MPSoC applications, multicast plays a key role in

whole system performance. Traditional unicast-based router could implement multicast by replicating and

sending copies to different destination nodes. However, it is inefficient, due to the long startup latency for

some packets. Thus, some efficient multicast-based routers were proposed [6], [7], [8], [9]. Generally,

routing approaches on NoC can be classified into two categories: table-based and logic-based. Since the

table-based approach supports any-shaped routing path according to special requirement, it is widely used in

multicast.

This work is partly based on the work in [9], which supports any-shaped path setup. Since paper [9]

didn't show design of the lookup table in detail, we walk through the detailed design of lookup table, which

is a key component in table-based multicast supported router.

The paper is organized as follows. In Section 2, a brief review of related work is presented. In Section 3,

we introduce the architecture of our router as preliminaries. In Section 4, the design and implementation of

the lookup table are discussed. In Section 5, we present the experiment result. Finally, conclusion and future

work are given in Section 6.

2. Related Work

For table-based routing, Jerger et al. presented an efficient mutlicast routing scheme named Virtual

Circuit Tree Multicasting (VCTM) [6]. VCTM constructs the multicast tree incrementally by sending several

unicast setup packets to destinations. Each setup packet is routed using the Dimension-Ordered Routing

(DOR) algorithm and the outgoing direction is stored in a table entry according to the identical ID [6]. Based

on VCTM, Hu et al. proposed a approach to setup the multicast path in a optimized shape [9]. In their

scheme, a two-period sub-path setup process is used to form the multicast tree incrementally. During the first

period, the setup packet routes to a predetermined intermediate node just likes the normal unicast packet; in

*E-mail address: huwenmin@nudt.edu.cn

2011 International Conference on Computer Science and Information Technology (ICCSIT 2011)

IPCSIT vol. 51 (2012) © (2012) IACSIT Press, Singapore

DOI: 10.7763/IPCSIT.2012.V51. 119

713

the second period of sub-path setup, the packet routes to the destination and simultaneously updates the

lookup table using the outgoing direction computed by the routing unit.

Since both [6] and [9] didn't introduce the implement of lookup table in detail, we give a HDL

implementation of lookup table in detail.

3. Preliminaries

In this section, we first introduce the packet types supported by our router. Then, we gives the

architecture of proposed router. Since we adopted lookahead routing, the packet format and architectures are

different from the work in [9].

3.1. Packet Format

Each multicast forms a tree connecting the source with the destination set, which is identified by a

Multicast ID number to each source node and its destination nodes combination. For a tree-based approach, a

multicast packet travels along a common path until it arrives at the branch node, where it is replicated and

forwarded to corresponding outgoing ports. Once a multicast tree is setup, the packet will be routed based on

the multicast table (MCT) number at each router. At the source node, destination set content addressable

memory (CAM) is integrated to record the destination set for multicast trees. Each entry is n bits vector (n

represents the number of nodes on the NoC). If one bit is set, it means that the corresponding node is the

destination node. A bit indicating whether the entry is valid is also included. At each router, MCT is

partitioned to n sub-tables corresponding to each source node. Each sub-table has 16 entries or more.

In our scheme, incremental setup is adopted to simplify the process of multicast path building which is

similar to VCTM. In VCTM, each setup packet is routed using the Dimension-Ordered Routing (DOR)

algorithm and the routing result is stored in a table according to the identical ID. The sub-path begins from

the source node and ends at one destination node. So for a certain source-destination set, the mulitcast path

shape is determinate. However, in our approach, the process of each sub-path setup is divided into two

periods (TPSS), where during the first period the setup packet just routes to the predeterminate intermediate

node, and during the second period the packet routes to the real destination node with the routing results

reserved into the lookup table in the router passing through. The intermediate node is the branch node of

multicast tree, which is determined by path searching algorithms. The sub-path begins from the intermediate

node and ends at one destination node. Multiple unicast setup packets can be injected into the network to

setup the sub-path in parallel. When all are done, a multicast tree is constructed successfully.

Fig. 1. Packet Format for all the packets supported in proposed router.

714

As shown in Fig. 1, the packets supported in our router are classified into four categories: MC_SET_1,

MC_SET_2 and MC_SET_RPLY are multicast setup; MC_CLR and MC_CLR_RPLY are multicast evicting;

MC_NORMAL is multicast data packet; and UC is unicast data packet. The fields of packet are defined as

follow: X DIR and Y DIR indicate the directions of destination node, X DIS and Y DIS are the Manhattan

distance between the source node and destination node in X direction and Y direction. Since lookahead

routing is adopted in our router, OUTPORT field stores the routing result of downstream router. MCT# is the

id of multicast table entry. Source address is also encoded in SRC. SET/CLEAR indicates whether a sub-path

is added to existing path or it is cut off. Four different flit types are supported by 2 bits field of FLIT TYPE:

Head, body, tail and HBT.

TPSS is executed by routing packet MC_SET_1 and MC_SET_2. During the first period, the setup packet

MCT_SET_1 routes like unicast packet until it reaches the intermediate node. On arriving at the intermediate

node, the first 11 bits of PAYLOAD is replicated to the field of X DIR, Y DIR, X DIS, Y DIS and OUTPORT

to form the new destination while the PACKET TYPE is also changed to MC_SET_2. TPSS enters the

second period. When the packet traverses a router, the routing result is used to update multicast table entry

corresponding to the combination of SRC field and MCT# field. Once the MCT_SET_2 reaches destination, a

multicast reply packet (MC_SET_RPLY) is sent to the source. The other setup packets can be injected into

network without waiting for the reply of the former setup packet. Each branch of the tree can be built

simultaneously. When the source node receives the replies of all the destination nodes, the setup is

completed.

When a multicast destination set is missed in CAM and there is no free entry to be utilized, a used

multicast tree is needed to be evicted. Only the source node has the right to evict the multicasts tree.

MC_CLR packet will be routed by looking up MCT just like normal multicast data packet (MC_NORMAL).

After getting the outgoing ports, the corresponding table entry will be cleared in next cycle. When the

MC_CLR packet sinks at the destination node, the destination node will generate a reply packet

(MC_CLR_RPLY). Once the source node receives all the reply packets, the multicast tree is evicted.

3.2. router architecture

In this research, we use the wormhole router due to its small buffer requirement and high throughput. Fig.

2 shows the architecture of the proposed router. It has five input ports, each of which contains four Virtual

Channels (VCs). A register file with five read ports and one write port is integrated into the router to store

outgoing ports for the multicast packet. Both unicast and multicast follow the pipeline stages: buffer

write/routing computation (BW/RC), switch allocation/virtual channel allocation (SA/VA), switch

traversal/line traversal (ST/LT). We use look ahead routing [10] to compute the output port for the next

router and store it into the OUTPUT PORT field of the head flit. Output directions of head flit in current

router is achieved by selecting one from OUTPUT PORT field and OP2 from the multicast table. The

criterion for output direction selecting is the packet type. For example, MC_NORMAL and MC_CLR use

OP2 as the output directions while others use the OUTPUT PORT field in their head flit. MCTSG shown in

Fig. 2 is the logic block to generate operation signals to multicast table according to some fields of head flit

(FLIT TYPE, PKT TYPE, SRC, MCT#, SET/CLEAR). The operations to multicast table involve reading

outgoing ports from multicast table (MC_NORMAL, MC_CLR), setting some bit in one entry of multicast

table (MC_SET_2), and clearing all the bits in one entry of multicast table (MC_CLR).

715

Fig. 2. Router Architecture

For the multicast packet routing, the result may contain multi-port. The flit is replicated to one port at

one ST/LT stage when successfully getting the grant in SA/VA. Only when the flit is successfully transferred

to all the destination ports, can the flit be deleted from the buffer. To keep the state of each multicast flit, the

input virtual channel (VC) reserves a separate VC state register and buffer pointers. It is necessary to forward

and control the pipeline stage by using the state register and buffer pointers. If the port belongs to the RC

results, then its state register will be set to advance to SA/VA, otherwise the state will be idle. The buffer

pointers contain a head pointer for an input VC, and five read pointers for all the destination ports.

As previously mentioned, any-shaped multicast path is supported in our NoC by injecting multiple setup

packets to form the path incrementally. MC_SET_1 needs to be changed to MC_SET_2 at the intermediate

node. So packet type convert logic (PTC) is integrated into the router too. As shown in Fig. 2, PTC is set

after the RC. In PTC module, if MC_SET_1 's X DIS field and Y DIS field are 0, it would be changed to

MC_SET_2 . The first 11 bits of PAYLOAD is also copied to X DIR, Y DIR, X DIS, Y DIS and OUTPUT

PORT. This routing information is for the downstream router which is computed at the source node, so it is

not necessary to compute the output direction due to the change of destination.

4. Implementation of lookup table

In order to support the functions aforementioned, lookup table should support these operations: setting

some bit in one entry, clearing whole entry and reading whole entry. These operation signals were generated

by MCTSG, as shown in Fig. 3. Signals SET/CLEAR, PKT TYPE, FLIT TYPE, OUTPUT

716

Fig. 3. Logic for MCTSG

PORT' and SRC_MCT# directly connect to the bits in packet stored in register. OUTPUT PORT is the

outgoing direction computed by the upstream router, which is decoded from OUTPUT PORT' via 3-5

decoder. The OP2 are the outgoing directions read from the lookup table according SRC and MCT# .

SET/CLEAR is used to select one operation from setting or deleting the corresponding bit in lookup table.

WD is the final value written into the lookup table when the write enable signal WE is set. The write

operation is enabled under two conditions: the packet type is MC_SET_2, where the WD selects the output

from multiplexer controlled by SET/CLEAR; the packet type is MC_CLR, where the value 0 is selected as

WD. Route_by_table is set only when the packet type is MC_NORMAL (110) or MC_CLR (100), where the

flit type is HDT (01) or Head (00).

Fig. 4. Structure for Lookup Table

Fig. 4 shows the structure of lookup table, which is composed of multiplexer, register file, arbiter and

transfer enable signal generator. There are five read ports in register file, which are corresponding to five

input ports. Since the writing operation is not frequent, only when the entries is updated can it be executed,

just one write port is integrated in register file. Hence, concurrent write requests from input ports must be

arbitrated by round robin arbiter to avoid conflict. The one getting the grant writes the value to the register

file, while other requests are hold by set the transfer enable signal as 0. Once the transfer enable signal is 0,

the corresponding upstream router's output port is locked, and no new packet arrives at the input port. The

register storing the setup packet is also locked and the write request is hold.

Fig. 5. Logic for Transfer Enable Signal Generator (input port E)

Fig. 5 shows the logic in Transfer Enable Signal Generator (TESG) for input port E. Since the logic for

other ports is the same, here are not shown in detail. The transfer enable signal (TE_TO_E) is initiated as 1.

717

Only when the write enable signal (WE_FROM_E) is 1 and fails to get the write grant, where the GNT [0] is

0, the TE_TO_E will be reset to 0, then the register in input port E is locked. If the round robin arbiter gives

the grant of writing after some cycles, the TE_TO_E will be set as 1, the register is unlocked.

5. Experiment

To evaluate the function of the lookup table, we develop the HDL model. Fig. 6 shows the waveform

from the simulation by ModelSim. Two writing requests, WE_FROM_L and WE_FROM_E are initiated

simultaneously. However, only the WE_FROM_L get the grant, and the value of WD_FROM_L (00101) is

to be written to registers[1] in next cycle according to the ADDR_FROM_L. The write request

WE_FROM_E holds for one cycle, and gets the grant. Hence, the value of WD_FROM_E (00001) is to be

written to registers[0] in next cycle. The read function is also correct, where the RD_TO_E and RD_TO_L

get the value in the same cycle, where the register is updated.

Table 1. Area and Power Breakdown

 Lookup table MCTSG

entries 32 64 128 256 512 1024

Area(um2) 7211 13599 26840 52757 104071 199785 83.26

Power(mW) 3.77 7.01 13.41 26.05 50.99 117 0.023

Fig. 6 Waveform for lookup table

Our lookup table and MCTSG have been synthesized using a CMOS stand-cell technology library from

Chartered Semiconductor Manufacturing. Table 1shows the synthesis results with 90-nm CMOS stand-cell

technologies. The logic synthesis of lookup table is made by setting the target working frequency to 1GHz.

6. Conclusions

In this paper, the design and implementation of a lookup table have been proposed, which facilitate the

multicast supporting in Network-on-Chip (NoC). Our lookup table allows setting or clearing some bit in a

table entry, clearing table entry and reading the content from the table. Base on this, our scheme could setup

any-shaped multicast path by combine the sub-path incrementally.

For future work, we would like to research the dynamic organization of lookup table, which could

downsize the lookup table.

7. Acknowledgement

This work is supported by the National Science Foundation of China, under grant No.60970037, and

Doctor Program Foundation of Education Ministry of China, under grant No. 20094307110009 and No.

20114307130003.

8. References

[1] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. Guaranteed bandwidth using looped containers in temporally

disjoint networks within the Nostrum network on chip. In Proceedings of the Design Automation and Test in

718

Europe Conference, February 2004.

[2] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, et al. The Raw microprocessor: A computational fabric for software

circuits and general purpose programs. IEEE Micro, 22(2):25–35, 2002.

[3] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, et al. Exploiting ILP, TLP, and DLP with the polymorphous

TRIPS architecture. In Proceedings of the 30th annual international symposium on Computerarchitecture,

February 2003.

[4] P. Guerrier and A. Greiner. A generic architecture for on-chip packet switched interconnections. In Proceedings

of the Design, Automation and Test in Europe Conference, March 2000.

[5] E. Rijpkema, K. Goossens, J. Dielissen A. R˘adulescu, J. van Meerbergen, P. Wielage, and E. Waterlander. Trade

offs in the design of a router with both guaranteed and best-effort services for networks on chip. IEE Proceedings:

Computers and Digital Technique, 150(5):294–302, September 2003.

[6] N. E. Jerger, L. S. Peh, and M. Lipasti. Virtual circuit tree multicasting: A case for on-chip hardware multicast

support. In Proceedings of the 35th annual international symposium on Computer architecture, June 2008.

[7] F. A. Samman, T. Hollstein, and M. Glesner. Multicast parallel pipeline router architecture for network-on-chip.

In Proceedings of the Design, Automation and Test in Europe Conference, March 2008.

[8] S. Rodrigo, J. Flich, J. Duato, and M. Hummel. Efficient Unicast and Multicast Support for CMPs. In Proc. 41st

IEEE/ACM Int’l Symp. Microarchitecture, pages 364–375, 2008.

[9] W. Hu, Z. Lu, A. Jantsch, and H. Liu. Power-efficient tree-based multicast support for networks-on-chip. In

Proceedings of 16th Asia and South Pacific Design Automation Conference (ASP-DAC11), January 2011.

[10] M. Galles. Scalable Pipeline Interconnect for Distributed Endpoing Rouing: The SGI SPIDER Chip. In Proc. Hot

Interconnect, pages 141–146, 1996.

719

