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Abstract. In this paper, the existence of multiple positive solutions for a class of p-Laplacian discrete 

boundary value problems is studied by applying three critical points theorem 
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1. Introduction 

Consider the following discrete boundary value problem 

[ ( ( 1))] ( , ( )) 0, (1, ),

(0) 0, ( 1) 0,

p
u t f t u t t Z T

u u T

      

  





                                                                                                            (1) 

Where T is a positive integer, 1p   is a constant,   is the forward difference operator defined 

by ( )u t ( 1) ( ),u t u t   ( )
p

s  is a  p-Laplacican operator, that is, 
2

( )
p

p
s s s



 . For any (1, )t Z T , ( , )f t x  is 

a continuous function on x . A sequence  
1

0
( )

T

t
u t




 is called a positive solution of (1)  if  

1

0
( )

T

t
u t




 satisfies (1) 

and ( ) 0u t  for (1, )t Z T . 

Due to its applications in physics, such as non-Newtonian fluid mechanics, turbulence of porous media, 

positive solutions of p-Laplacian discrete boundary value problems are studied by many authors. Usually, 

these results are obtained by applying fixed point theorem and critical point theory. One can see [1-7]. Very 

recently, three critical points theorem has been applied to studymultiple solutions of  p-Laplacian discrete 

boundary value problems [8,9]. Inspired by these results, in this paper we will apply a version of three critical 

point theorem to study the multiple positive solutions of (1). 

Let E  be the set of the functions : (0, 1)u Z T R   satisfying (0) 0, ( 1) 0u u T   . Equipped with inner 

product 
1

( , ) ( ) ( ), ,
T

t

u v u t v t u v E


   and induced norm 

1/ 2

2

1

( ) ,

T

t

u u t u E


  
 
 
 
 , 

E  is a T -dimensional Hilbert space.. 

Furthermore, for any constant 1p  ,  we define another norm 
1/

1

1

( 1) ,

p
T

p

p

t

u u t u E




    
 
 
 
 . 

Since E is finite dimensional, there are two constants 
1
,C  

2
0C  such that  

1 2p
C u u C u  .                                                                                                                                 (2) 
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For convenience, we define the following two functionals 
1

11

1
( ) ( 1) ( ) ( , ( )),,

T T

t

p

t

J u F t uu u
p

tt




     , 

where u E , 
0

( , ) ( , )
x

F t x f t s ds   for any x R . Clearly,  1
, , ,J C E R   that is, , J are continuously 

differentiable on E . Using the summation by parts formula and the fact that (0) 0, ( 1) 0u u T   , it is easy to 

see that for any ,u v E ,  

( )( )u v
1

0

2

1

( ) ( )
lim ( 1) ( 1) ( 1)

T

t
t

pu tv u
u t u t v t

t









  
         

1

1 1

( ( 1)) ( 1) ( ( 1)) ( 1) ( ( )) ( )
T T

p p p

t t

u t v t u t v t u T v T  


 

               

1

1

1

( ( 1)) ( 1) | ( ( 1)) ( ) ( ( )) ( )T

p

T

p p

t

u t v t u t v t u T v T  



                

1

( ( 1)) ( )
T

p

t

u t v t


     . 

Noticing the fact that (0) 0, ( 1) 0u u T   , for any u E , we obtain 

0
1

( ) ( )
( )( ) lim ( , ( )) ( )

T

t
t

J u tv J u
J u v f t u t v t

t


 
    

for any ,u v E . If 

1

( ) ( )( ) [ [ ( ( 1))] ( , ( ))] ( ) 0,
T

p

t

J u v u t f t u t v t  


          

       

then for any  1,t Z T  and (0) 0, ( 1) 0u u T   we have 

[ ( ( 1))] ( , ( )) 0,
p

u t f t u t      

that is, a critical point of functional J  corresponds to a solution of (1). Therefore, we reduce the 

existence of a solution of (1) to the existence of a critical point of functional J   on E . 

The following theorem and lemmas play an important role in proving the main result. 

Suppose that Y X . Let  
w

Y  be the weak closure of  

Y , that is, for any ,F Y


  if there exists sequence { }u Yn  such that ( ) ( )F u F un  , then
w

u Y . 

Theorem 1 ([10]) Let X be a reflexive separable real  

Banach space. : X R  is a nonnegative continuous Gateaux differentiable and sequentially weakly lower 

semicontinuous functional whose Gateaux derivative admits a continuous invers on X

. :J X R  is a 

continuous Gateaux differentiable functional whose Gateaux derivative is compact. Assume that there exists 

0
u X  such that 

0 0
( ) ( ) 0u J u    and that [0, )   , 

(i) lim ( ( ) ( )) ;
u

u J u


   
‖ ‖

 

Furthermore, assume that there are 
1u X  and 0r  such  

that  

(ii) 
1

( )r u  ; 

(iii) 
1

1
(( , ])

1

sup ( ) ( )
( )

w

u r

r
J u J u

r u


 


 

. 

Then, for each 
1

  ,where  

1

1
1 1

1

( )
,

( ) sup ( ) sup ( )
(( , ]) (( , ])

u r

w w
J u J u J u

u r u r
 




   

 
 
 
 
 

  , 

functional J  has at least three solutions in X , and moreover, for each 1h  ,  there exists an open 

interval 
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1

2

1

(( , ])
1

0,
( )

sup ( )
( )

w

u r

hr

J u
r J u

u 
 

 




 
 
 
 
  

 

and a positive constant   such that for each 
2
,  functional J  has at least three solutions in 

X whose norms are less than  .  

Lemma 1  For any u E and 1,p   the following  

inequality holds:  

 
( 1)/

(1, ) 

( 1)
max | ( ) | .

2
Z

p p

t T p

T
u t u






  

Proof.  Suppose that there exists ( ) 1,Zk T such  that 

( 1, )
| ( ) | max {| ( ) |}.

t TZ
u k u t


  

It follows easily from (0) 0, ( 1) 0u u T   that 

    
1

1 1

| ( ) | | ( 1) |, | ( ) | | ( 1) |
k T

t t k

u k u t u k u t


  

        

holds, that is, 
1

1

1
| ( ) | | ( 1) | .

2

T

t

u k u t




    

Discrete Holder inequality shows that 

 
  ( 1)/

1/
1 1

1 /

1 1

( 1)( 1) 1 ( 1)
p

p p

p
T T

pp p

t t

uTu t T u t 

 


 

 
 

      
 

   

                                  
The proof is complete.  

Lemma 2 ([11])  If 

[ ( ( 1))] 0, (1 , ),

(0) 0, ( 1) 0

p
u t t T

u u

Z

T

    

  





 

holds, then either u  is positive or 0u  on (1, )Z T . 

2. Proof of main result 

Theorem 2   Suppose that  : (1, ) [0, )f TZ    [0, ) , ( , 0) 0f t  . Suppose that there exist four 

constants  , , ,c d    with 

( 1) /

1

2

p p

T
c d





 
 
 

and 1 p   such that  

(A)  
(1, ) 1

1

 

(2 )
max ( , ) ( , )

[(2 ) 2( 1) ]

p T

t T p p pZ

t

c
F t c F t d

T c T d
 




 

 , 

 (B) ( , ) (1 | | )F t x x


  . 

In addition, let 

1 (1, )

(1, )

1 2

 1

( , ) max ( , )
( 1) max ( , )

, ,
(2 ) 2

T

p t T

T t

p

Z

p

Zt

p F t d T F t c
p T T F t c

c d
 

 

 




 

 
  


 

and for any 1h  , 

(2 )

1 1
2 ( , ) ( 1) max ( , )(1, )

1
 

p
h cd

T
p p p p

pc F t d T T Zpd F t ct T
t

a
 

   


 , 
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then for any
1

12

1 1
,,

 
  

 
 
 

 the problem (1)  has at least two positive solutions in E , and for any 1h  , 

there exist an open interval 
2

[0, ]a  and a positive constant  such that for
2

  , the problem (1) has at 

least two positive solutions on E  whose norms are less that  . 

Proof. Let X be the finite dimensional Hilbert space E . Then X X


 . The definition of  shows that 
 is nonnegative continuous Gateaux differentiable and weak low semicontinuous functional, whose Gateaux 
derivative has continuous inverse on E ,  and J is a continuous Gateaux differentiable functional, whose 

Gateaux derivative is compact. Now for any (0, 1 ),t TZ   it is easy to know 
0

0u X  and 

0 0
( ) ( ) 0u J u   . In the rest of the proof, we replace X  by E . 

Because the solution of  boundary value problems (1)  is required to be positive, we suppose that 
( , ) 0f t u   for 0u  . We still use ( , )f t u  and ( , )F t u  to denote new ( , )f t u and ( , )F t u . Next, considering (2) 

and condition (B),  for any u E  and 0  , 
1

1 1

1
( ) ( ) | ( 1) | ( , ( ))

T T

p

t t

u J u u t F t u t
p

 


 

        

                          1

3

1

1
(1 | ( ) | ) ,

pT

p p

p

t

C
u u t u C u T

p p

  
 



     ‖‖ ‖‖ ‖‖  

 

where 
3

C is such that 
31

u uC

 , 

 
1/

1

1

T

t

u u t










 
 
 
 .  

Because p  , for all  (0, ),    

lim ( ( ) ( )) ,
u

u J u


     

the conditions (i) of theorem 1 is satisfied. 

Let 

1 1

0, 0 or 1, (2 )
( ) .

, (1, ), ( 1 )

p

p

t T c
u t r

d t Z T p T


 
 

 





 

Clearly, for 
1

,u E  

1

1 1 1 1

1 1 1

1 2
( ) | ( 1) | , ( ) ( , ( )) ( , ).

pT T T

p

t t t

d
u u t J u F t u t F t d

p p



  

          

Notice that 

 1 /

1

2

p p

T
c d





 
 
 

,  we have 

1 1

2 (2 )
( ) ,

( 1)

p p

p

d c
u r

p p T


   


 

the conditions (ii) of theorem 1 is satisfied. Next we prove that condition (iii) of theorem 1 is satisfied. For 

any ( ) 1,Zt T , the estimation ( )u r  shows that 

 
1 1 1

( 1)

2

( 1) ( 1)
( )

2 2

p

p p

pp

p p

p p

T
u t u

p T pr T
u

  



 

   , 

It follow from the definition of r that 
1
(( , ]) { :| ( ) | , (1, )} .r u E u t c Zt T


        

So, for any ,u E the following result  

1
1

(1, )
(( , ])(( , ])

 
sup ( ) sup ( ) max ( , )

w t T
u r

Z
u r

J u J u T F t c





  

                                     

exists. On the other hand, it is easy to know 

1 1

11

(2 )
( ) ( , ).

( ) (2 ) 2( 1)

p T

p p p

t

r c
J u F t d

r u c T d





   

  

It follows from the hypothesis  (A)  that 
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1
1

(( , ])
1

sup ( ) ( )
( )

w

u r

r
J u J u

r u


 


 

. 

The conditions (iii) of theorem 1  is satisfied. Notice that  

      

 

1

1

(1, ) 1
(( , ])

(2 ) 1
.

sup ( ) ( 1) max ( , )

p

p

t Z T
u r

c

J u p T T F t c

r







 

 


 

Simple calculation shows that 
2 1

  .For any 
1

2 1

1 1
,

 
 

 
 
 

,  applying theorem 1, problem (1) has at 

least three solutions in .E  By lemma 2, problem (1) has at least two positive solutions. 

For every 1h  it is easy to know that  

(2 )

( )1 1 11sup ( ) 2 ( , ) ( 1) max ( , )(( , ]) (1, )
1

 ( )
1

p
hr h cd

J u T
p p p pr J u pc F t d T T pd F t cu r t Tu Z

t

a

      


  

Considering condition (A), we know that 0a  . Then from  

theorem 1,  for every 1h  , there exist an open interval 
2

[0, ]a   and a positive constant  such that 

for
2

  , the problem (1) has at least three solutions in E  whose norms are less than  . By lemma 2, 

problem (1)  has at least two positive solutions whose norms are less than  .  

Next An example is given to demonstrate the result of  

theorem 2. 

Example.  Consider the case that ( , ) ( )f t u tg u ,  

20, 3T p  , where 

6

1, 6 ,
( )

6 1, 6 ,

u

d

e u d
g u

u e d u d

 


   





 

Then 

2 6 6 2

1, 6 ,

( ) 1
( 6 1) 6 ( 1) 18 , 6 .

2

u

d d

e u u d

G u
u e d u d e d u d

   


 
      



 

It is easy to know that for 1,c   20,d 
120

20 ,e   2,   the conditions of theorem 2 are satisfied. 

Therefore problem (1) has at least two positive solutions. 
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