2011 International Conference on Computer Science and Information Technology (ICCSIT 2011)
IPCSIT vol. 51 (2012) © (2012) IACSIT Press, Singapore
DOI: 10.7763/1IPCSIT.2012.V51.53

Positive Solutions for P-Laplacian Discrete Boundary Value Problems
via Three Critical Points Theorem
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Abstract. In this paper, the existence of multiple positive solutions for a class of p-Laplacian discrete
boundary value problems is studied by applying three critical points theorem
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1. Introduction
Consider the following discrete boundary value problem

Alg, (Au(t-1)]+ Af (t,u(t)) =0,t € Z(LT), L
u(0)=0,u(T +1) =0, @

Where T is a positive integer, p>1 is a constant, A is the forward difference operator defined
by Au(t) =u(t+1)-u(t), 4,(s) isa p-Laplacican operator, that is, 4, (s) =|s|”’2 s.Forany teZ(@,T), f(t,x) is

a continuous function on x. A sequence {u(t)} . is called a positive solution of (1) if {u(t)} " satisfies (1)
and u(t)>0fortez(LT).

Due to its applications in physics, such as non-Newtonian fluid mechanics, turbulence of porous media,
positive solutions of p-Laplacian discrete boundary value problems are studied by many authors. Usually,
these results are obtained by applying fixed point theorem and critical point theory. One can see [1-7]. Very
recently, three critical points theorem has been applied to studymultiple solutions of p-Laplacian discrete
boundary value problems [8,9]. Inspired by these results, in this paper we will apply a version of three critical
point theorem to study the multiple positive solutions of (1).

Let E be the set of the functions u:Z(0,T +1) — R satisfying u(0) =0,u(T +1) =0. Equipped with inner

product (u,v) = Zu(t)v(t), vu,v € E and induced norm

t=1

T 1/2
Iu] :(Zuz(t)) WueE.
t=1

E isa T -dimensional Hilbert space..
Furthermore, for any constant p >1, we define another norm

Til Up
lull, =(Z|Au(t—1)|p) ,VueE.

t=1

Since E is finite dimensional, there are two constants C,, C, > 0such that
C.flull<]lull, <€, ul @
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For convenience, we define the following two functionals

T+1

l T
@(u):;Z|Au(t—1)|",J(u): F(t,u(t)),,

where ueE , F(t,x):Lx f(t,s)ds for any xeR. Clearly, ®,J eC'(E,R), that is, ®,J are continuously

differentiable on E . Using the summation by parts formula and the fact that u(0) = 0,u(T +1) =0, it is easy to
see that forany u,veE,

D)= PM) e Aut-pavee -1

t=1

@'(u)(v) = lim

T+l

=" ¢ (Au(t-D)Av(t-1) = y 4, (Au(t —1))Av(t —1) - ¢ (Au(T)Av(T)
=1 I-I:—l
= ¢, (Au(t-)Avt-D[* > Ad, (Au(t-D)v(t) — 4, (Au(T))Av(T)
t=1

=—D A (Au(t-D)v(t) .

Noticing the fact that u(0) =0,u(T +1) =0, forany u € E , we obtain

JUu+tv)=J(u)
t

J'(u)(v) = lim = > f(tut)v(t)

forany u,ve E . If

(@—-23)'(u)(v) =D [Alg, (Au(t —D)]+ A (&, u®)M() =0,

then forany t ez (1,T) and u(0) =0,u(T +1) = 0we have

Alg, (Au(t -1)]+ A (t,u(t)) =0,
that is, a critical point of functional ® —AJ corresponds to a solution of (1). Therefore, we reduce the
existence of a solution of (1) to the existence of a critical point of functional ®-4J on E.

The following theorem and lemmas play an important role in proving the main result.

Suppose that Y < X . Let Y be the weak closure of
Y , thatis, forany F eY™, if there exists sequence {up}<Y such that F(up)—>F(u), thenueVY".

Theorem 1 ([10]) Let X be a reflexive separable real
Banach space. @ : X — Ris a nonnegative continuous Gateaux differentiable and sequentially weakly lower
semicontinuous functional whose Gateaux derivative admits a continuous invers on X . J: X >R is a
continuous Gateaux differentiable functional whose Gateaux derivative is compact. Assume that there exists
u, € X suchthat ®(u,) =J(u,) =0 and that A [0, +x),

(i) lim (@) - AJ()) = +oo;

[I'ull—>-+o0

Furthermore, assume that there are u, € X and r > 0 such

that
(if) r<®(u,);

r
)< ———J
ued ™ (~oo,r]) r+ (D(Ul)

(iii) sup (u) .

Then, for each 1 € A, ,where

A — D(u,) r

J (Ux)’SUpuem’i((fw,r])W J(u) SuPueqa’i((fw,r])W J(u)

functional @ - 1J has at least three solutions in X , and moreover, for each h >1, there exists an open
interval
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hr

A c

S TS
r——=—sup

L)
D(u,) ued™ ((~0,r])

and a positive constant o such that for each e A,, functional ®—4J has at least three solutions in
X whose norms are less than o .
Lemmal Forany ueEand p>1, the following
inequality holds:
(T +1)(P*1)/p
maxtsZ(l,T) {| U(t) |} < 2 ||u||p :

Proof. Suppose that there exists k e Z(1,T)such that

| u(k) |= maxtéz(ly'r){l u(t) |}'
It follows easily from u(0) = 0,u(T +1) = Othat

T+1

lu(k) [ Y Au-1 ], Ju(k)|< D Aut-1)]

t=k+1

holds, that is,

T+1

1
lu(k) |< EZIAU(t—l)I-

t=1

Discrete Holder inequality shows that
T4 T4 1p
> |Au(t-1)|< (T +2)" " (ZIAu(t —1)|“J =T+ ],

t=1 t=1

The proof is complete.
Lemma 2 ([11]) If

—Alg, (Au(t-1)]20,te Z(L,T),
u@=>0,u(T+1) >0
holds, then either u is positive or u=00on Z(L,T).

2. Proof of main result
Theorem 2 Suppose that f: Z(1,T)x[0,+0) — [0,+x), f(t,0)=0. Suppose that there exist four

(p-1)/p
+
) dand 1< a < p such that

constants c,d, u, a with c<(
2

(2c)’ S
A 7 ,d),
(A) max,_; . F(t.c) < T[(2c)® +2(T +1)'Hdp]1z=1:|:(t :
(B) F(t,x) < p(@+] x[*).
In addition, let

F(t,c) p[ZF(t'd)—T max, ., I:(t,C)}

P, = :
(2¢)° 2d°

and forany h>1,

p(T +1)"'T max

teZ(LT)

&

p
h(2cd
a= ( ) ,

=
2P peP 3 Ftd)-T (40P pd P maxe 77y F(t0)
t=1
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11 . . .
then forany e A, = (—,—], the problem (1) has at least two positive solutions in E, and for any h>1,
goz (01

there exist an open interval A, [0,a]and a positive constant o such that for 1 e A, , the problem (1) has at
least two positive solutions on E whose norms are less that o .

Proof. Let X be the finite dimensional Hilbert space E. Then X = X". The definition of ® shows that
® is nonnegative continuous Gateaux differentiable and weak low semicontinuous functional, whose Gateaux
derivative has continuous inverse on E, and Jis a continuous Gateaux differentiable functional, whose

Gateaux derivative is compact. Now for any te Z(0,T+1), it is easy to know u =0eX and

®(u,) = J(u,) =0. In the rest of the proof, we replace X by E.

Because the solution of boundary value problems (1) is required to be positive, we suppose that
f(t,u)=0 for u<0. We still use f(t,u) and F(t,u) to denote new f(t,u)and F(t,u). Next, considering (2)

and condition (B), forany ue E and 2>0,

T+1

1 T
D(u) - AI(u) == D Au(t-1) " =2 F(t,u(t))

P

1 z C’
> =l = A @ ut) [7) = == ull” = AuC; Il ull” = AT,
p p

t=1

where Cis such that [lul, <C,|ul,

T Ua
ol ~(Sletor
t=1

Because a < p, forall 2 e (0, +x),
lim (®(u) — 2 (u)) = +o,

(|20
the conditions (i) of theorem 1 is satisfied.
Let

0, t=0o0rT+1, (2¢)°
u, (t) = r

d, tez@T), pT+)""
Clearly, for u e E,

T+1

@(u)—leAu(t pp=2

(p-1)/p
Notice that ¢ < (_+j d, we have
2

o) -2 9,

p o p(T+)™
the conditions (ii) of theorem 1 is satisfied. Next we prove that condition (iii) of theorem 1 is satisfied. For
any te Z(1,T), the estimation ®(u) < r shows that

Wl < p(T +1)" - pr(T +1)°"*

= P o < R
2
It follow from the definition of r that
® " ((—oo,r]) c{u e EJu(t)|<c, Vte Z(LT)}.
So, for any u € E, the following result

(T +1)“

sup

F(t,c)

LJu) = sup— O J(u) <T max

eZ(L,T
ued™ ((~e0,r]) ezan

exists. On the other hand, it is easy to know

(2c)°
d
r+o(u,) (20) +2(T+1)"d" T Z (t.d).

It follows from the hypothesis (A) that

1
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r
AU s——I(u).
ued™ (=e.r]) r+a(u,)

The conditions (iii) of theorem 1 is satisfied. Notice that

sup

®(u,) - 2d”° 1
_ T - !
J(u,) —sup—— J(u) p{z F(t,d)-Tmax F(t,c)} ?,
p
r . (2¢) _1

sup Ju) pT+D)"'T max, .., F(t.c) ¢

ued ™ ((=0,r])

. . 11 .
Simple calculation shows that ¢, > ¢ .For any 1€ A, =(—,—J, applying theorem 1, problem (1) has at
?, @
least three solutions in E. By lemma 2, problem (1) has at least two positive solutions.
For every h > 1litis easy to know that

hr h(2cd)P
) . T =a
sy (oo, I 2P peP X F(a)-T (140 P pd P maxe 717y F(t.0)
G)(Lll) t=1 '
Considering condition (A), we know that a > 0. Then from

theorem 1, for every h>1, there exist an open interval A, c[0,a] and a positive constant ¢ such that

for 2 e A,, the problem (1) has at least three solutions in E whose norms are less than o . By lemma 2,

problem (1) has at least two positive solutions whose norms are less than o .
Next An example is given to demonstrate the result of

theorem 2.
Example. Consider the case that f (t,u) =tg(u),

T =20, p =3, where
e' -1, u<e6d,
g =4
u+e —-6d-1, u>6d,
Then

e'—u-1, u<6d,

G(u) =
) £u2+(e6“—6d—1)u—6d(eed—1)+18d2, u>6d.

It is easy to know that for c=1 d =20, x=20xe”, =2, the conditions of theorem 2 are satisfied.
Therefore problem (1) has at least two positive solutions.
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