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Abstract. In this paper, the existence of multiple positive solutions for a class of p-Laplacian discrete 

boundary value problems is studied by applying three critical points theorem 
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1. Introduction 

Consider the following discrete boundary value problem 

[ ( ( 1))] ( , ( )) 0, (1, ),

(0) 0, ( 1) 0,

p
u t f t u t t Z T

u u T

      

  





                                                                                                            (1) 

Where T is a positive integer, 1p   is a constant,   is the forward difference operator defined 

by ( )u t ( 1) ( ),u t u t   ( )
p

s  is a  p-Laplacican operator, that is, 
2

( )
p

p
s s s



 . For any (1, )t Z T , ( , )f t x  is 

a continuous function on x . A sequence  
1

0
( )

T

t
u t




 is called a positive solution of (1)  if  

1

0
( )

T

t
u t




 satisfies (1) 

and ( ) 0u t  for (1, )t Z T . 

Due to its applications in physics, such as non-Newtonian fluid mechanics, turbulence of porous media, 

positive solutions of p-Laplacian discrete boundary value problems are studied by many authors. Usually, 

these results are obtained by applying fixed point theorem and critical point theory. One can see [1-7]. Very 

recently, three critical points theorem has been applied to studymultiple solutions of  p-Laplacian discrete 

boundary value problems [8,9]. Inspired by these results, in this paper we will apply a version of three critical 

point theorem to study the multiple positive solutions of (1). 

Let E  be the set of the functions : (0, 1)u Z T R   satisfying (0) 0, ( 1) 0u u T   . Equipped with inner 

product 
1

( , ) ( ) ( ), ,
T

t

u v u t v t u v E


   and induced norm 

1/ 2

2

1

( ) ,

T

t

u u t u E


  
 
 
 
 , 

E  is a T -dimensional Hilbert space.. 

Furthermore, for any constant 1p  ,  we define another norm 
1/

1

1

( 1) ,

p
T

p

p

t

u u t u E




    
 
 
 
 . 

Since E is finite dimensional, there are two constants 
1
,C  

2
0C  such that  

1 2p
C u u C u  .                                                                                                                                 (2) 
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For convenience, we define the following two functionals 
1

11

1
( ) ( 1) ( ) ( , ( )),,

T T

t

p

t

J u F t uu u
p

tt




     , 

where u E , 
0

( , ) ( , )
x

F t x f t s ds   for any x R . Clearly,  1
, , ,J C E R   that is, , J are continuously 

differentiable on E . Using the summation by parts formula and the fact that (0) 0, ( 1) 0u u T   , it is easy to 

see that for any ,u v E ,  

( )( )u v
1
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u t u t v t

t
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1

1

1

( ( 1)) ( 1) | ( ( 1)) ( ) ( ( )) ( )T

p

T

p p

t
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1

( ( 1)) ( )
T

p

t

u t v t


     . 

Noticing the fact that (0) 0, ( 1) 0u u T   , for any u E , we obtain 

0
1

( ) ( )
( )( ) lim ( , ( )) ( )

T

t
t

J u tv J u
J u v f t u t v t

t


 
    

for any ,u v E . If 

1

( ) ( )( ) [ [ ( ( 1))] ( , ( ))] ( ) 0,
T

p

t

J u v u t f t u t v t  


          

       

then for any  1,t Z T  and (0) 0, ( 1) 0u u T   we have 

[ ( ( 1))] ( , ( )) 0,
p

u t f t u t      

that is, a critical point of functional J  corresponds to a solution of (1). Therefore, we reduce the 

existence of a solution of (1) to the existence of a critical point of functional J   on E . 

The following theorem and lemmas play an important role in proving the main result. 

Suppose that Y X . Let  
w

Y  be the weak closure of  

Y , that is, for any ,F Y


  if there exists sequence { }u Yn  such that ( ) ( )F u F un  , then
w

u Y . 

Theorem 1 ([10]) Let X be a reflexive separable real  

Banach space. : X R  is a nonnegative continuous Gateaux differentiable and sequentially weakly lower 

semicontinuous functional whose Gateaux derivative admits a continuous invers on X

. :J X R  is a 

continuous Gateaux differentiable functional whose Gateaux derivative is compact. Assume that there exists 

0
u X  such that 

0 0
( ) ( ) 0u J u    and that [0, )   , 

(i) lim ( ( ) ( )) ;
u

u J u


   
‖ ‖

 

Furthermore, assume that there are 
1u X  and 0r  such  

that  

(ii) 
1

( )r u  ; 

(iii) 
1

1
(( , ])

1

sup ( ) ( )
( )

w

u r

r
J u J u

r u


 


 

. 

Then, for each 
1

  ,where  

1

1
1 1

1

( )
,

( ) sup ( ) sup ( )
(( , ]) (( , ])

u r

w w
J u J u J u

u r u r
 




   

 
 
 
 
 

  , 

functional J  has at least three solutions in X , and moreover, for each 1h  ,  there exists an open 

interval 
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1

2

1

(( , ])
1
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( )

sup ( )
( )

w

u r
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J u
r J u

u 
 

 




 
 
 
 
  

 

and a positive constant   such that for each 
2
,  functional J  has at least three solutions in 

X whose norms are less than  .  

Lemma 1  For any u E and 1,p   the following  

inequality holds:  

 
( 1)/

(1, ) 

( 1)
max | ( ) | .

2
Z

p p

t T p

T
u t u






  

Proof.  Suppose that there exists ( ) 1,Zk T such  that 

( 1, )
| ( ) | max {| ( ) |}.

t TZ
u k u t


  

It follows easily from (0) 0, ( 1) 0u u T   that 

    
1

1 1

| ( ) | | ( 1) |, | ( ) | | ( 1) |
k T

t t k

u k u t u k u t


  

        

holds, that is, 
1

1

1
| ( ) | | ( 1) | .

2

T

t

u k u t




    

Discrete Holder inequality shows that 

 
  ( 1)/

1/
1 1

1 /

1 1

( 1)( 1) 1 ( 1)
p

p p

p
T T

pp p

t t

uTu t T u t 

 


 

 
 

      
 

   

                                  
The proof is complete.  

Lemma 2 ([11])  If 

[ ( ( 1))] 0, (1 , ),

(0) 0, ( 1) 0

p
u t t T

u u

Z

T

    

  





 

holds, then either u  is positive or 0u  on (1, )Z T . 

2. Proof of main result 

Theorem 2   Suppose that  : (1, ) [0, )f TZ    [0, ) , ( , 0) 0f t  . Suppose that there exist four 

constants  , , ,c d    with 

( 1) /

1

2

p p

T
c d





 
 
 

and 1 p   such that  

(A)  
(1, ) 1

1

 

(2 )
max ( , ) ( , )

[(2 ) 2( 1) ]

p T

t T p p pZ

t

c
F t c F t d

T c T d
 




 

 , 

 (B) ( , ) (1 | | )F t x x


  . 

In addition, let 

1 (1, )
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1 2
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( , ) max ( , )
( 1) max ( , )

, ,
(2 ) 2

T

p t T

T t

p

Z

p

Zt
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p T T F t c
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and for any 1h  , 

(2 )

1 1
2 ( , ) ( 1) max ( , )(1, )

1
 

p
h cd

T
p p p p

pc F t d T T Zpd F t ct T
t

a
 

   


 , 
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then for any
1

12

1 1
,,

 
  

 
 
 

 the problem (1)  has at least two positive solutions in E , and for any 1h  , 

there exist an open interval 
2

[0, ]a  and a positive constant  such that for
2

  , the problem (1) has at 

least two positive solutions on E  whose norms are less that  . 

Proof. Let X be the finite dimensional Hilbert space E . Then X X


 . The definition of  shows that 
 is nonnegative continuous Gateaux differentiable and weak low semicontinuous functional, whose Gateaux 
derivative has continuous inverse on E ,  and J is a continuous Gateaux differentiable functional, whose 

Gateaux derivative is compact. Now for any (0, 1 ),t TZ   it is easy to know 
0

0u X  and 

0 0
( ) ( ) 0u J u   . In the rest of the proof, we replace X  by E . 

Because the solution of  boundary value problems (1)  is required to be positive, we suppose that 
( , ) 0f t u   for 0u  . We still use ( , )f t u  and ( , )F t u  to denote new ( , )f t u and ( , )F t u . Next, considering (2) 

and condition (B),  for any u E  and 0  , 
1

1 1

1
( ) ( ) | ( 1) | ( , ( ))

T T

p

t t

u J u u t F t u t
p

 


 

        

                          1

3

1

1
(1 | ( ) | ) ,

pT

p p

p

t

C
u u t u C u T

p p

  
 



     ‖‖ ‖‖ ‖‖  

 

where 
3

C is such that 
31

u uC

 , 

 
1/

1

1

T

t

u u t










 
 
 
 .  

Because p  , for all  (0, ),    

lim ( ( ) ( )) ,
u

u J u


     

the conditions (i) of theorem 1 is satisfied. 

Let 

1 1

0, 0 or 1, (2 )
( ) .

, (1, ), ( 1 )

p

p

t T c
u t r

d t Z T p T


 
 

 





 

Clearly, for 
1

,u E  

1

1 1 1 1

1 1 1

1 2
( ) | ( 1) | , ( ) ( , ( )) ( , ).

pT T T

p

t t t

d
u u t J u F t u t F t d

p p



  

          

Notice that 

 1 /

1

2

p p

T
c d





 
 
 

,  we have 

1 1

2 (2 )
( ) ,

( 1)

p p

p

d c
u r

p p T


   


 

the conditions (ii) of theorem 1 is satisfied. Next we prove that condition (iii) of theorem 1 is satisfied. For 

any ( ) 1,Zt T , the estimation ( )u r  shows that 

 
1 1 1

( 1)

2

( 1) ( 1)
( )

2 2

p

p p

pp

p p

p p

T
u t u

p T pr T
u

  



 

   , 

It follow from the definition of r that 
1
(( , ]) { :| ( ) | , (1, )} .r u E u t c Zt T


        

So, for any ,u E the following result  

1
1

(1, )
(( , ])(( , ])

 
sup ( ) sup ( ) max ( , )

w t T
u r

Z
u r

J u J u T F t c





  

                                     

exists. On the other hand, it is easy to know 

1 1

11

(2 )
( ) ( , ).

( ) (2 ) 2( 1)

p T

p p p

t

r c
J u F t d

r u c T d





   

  

It follows from the hypothesis  (A)  that 
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1
1

(( , ])
1

sup ( ) ( )
( )

w

u r

r
J u J u

r u
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The conditions (iii) of theorem 1  is satisfied. Notice that  

      

 

1

1

(1, ) 1
(( , ])

(2 ) 1
.

sup ( ) ( 1) max ( , )

p

p

t Z T
u r

c

J u p T T F t c

r







 

 


 

Simple calculation shows that 
2 1

  .For any 
1

2 1

1 1
,

 
 

 
 
 

,  applying theorem 1, problem (1) has at 

least three solutions in .E  By lemma 2, problem (1) has at least two positive solutions. 

For every 1h  it is easy to know that  

(2 )

( )1 1 11sup ( ) 2 ( , ) ( 1) max ( , )(( , ]) (1, )
1

 ( )
1

p
hr h cd

J u T
p p p pr J u pc F t d T T pd F t cu r t Tu Z

t

a

      


  

Considering condition (A), we know that 0a  . Then from  

theorem 1,  for every 1h  , there exist an open interval 
2

[0, ]a   and a positive constant  such that 

for
2

  , the problem (1) has at least three solutions in E  whose norms are less than  . By lemma 2, 

problem (1)  has at least two positive solutions whose norms are less than  .  

Next An example is given to demonstrate the result of  

theorem 2. 

Example.  Consider the case that ( , ) ( )f t u tg u ,  

20, 3T p  , where 

6

1, 6 ,
( )

6 1, 6 ,

u

d

e u d
g u

u e d u d

 


   





 

Then 

2 6 6 2

1, 6 ,

( ) 1
( 6 1) 6 ( 1) 18 , 6 .

2

u

d d

e u u d

G u
u e d u d e d u d

   


 
      



 

It is easy to know that for 1,c   20,d 
120

20 ,e   2,   the conditions of theorem 2 are satisfied. 

Therefore problem (1) has at least two positive solutions. 
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