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Abstract. The Transmission Control Protocol (TCP) was designed to provide reliable end-to-end delivery 
of data over unreliable networks. Traditionally TCP was designed and optimized only for wired networks. 
Ignoring the properties of wireless Networks, TCP can be implemented with poor performance. In order to 
adapt TCP to wireless environment, improvements have been proposed in the literature to help TCP to 
differentiate between the different types of losses. Indeed, in wireless networks losses are not always due to 
network congestion, as it is mostly the case in wired networks. Here we present an overview of this issue and 
a detailed discussion of the major factors involved. In addition, we survey the main proposals which aim at 
increasing the TCP performance in the wireless environments. 
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1. Introduction  
Wireless mesh networks (WMN) are rapidly emerging as a promising complement to existing broadband 

access infrastructures, because they extend wireless local area network (WLAN) access beyond traditional 
hotspot areas to enhance coverage and provide seamless mobility. In WMNs, all communications between 
mesh network nodes are over radio links. Applications of WMNs include backhaul for broadband access 
networks, metropolitan area mobile networks, and citywide surveillance systems.  

TCP (Transmission Control Protocol) was designed to provide reliable end-to-end delivery of data over 
unreliable networks. In theory, TCP should be independent of the technology of the underlying infrastructure. 
In particular, TCP should not care whether the Internet Protocol (IP) is running over wired or wireless 
connections. In practice, it does matter because most TCP deployments have been carefully designed based 
on assumptions that are specific to wired networks. Ignoring the properties of wireless transmission can lead 
to TCP implementations with poor performance. In wireless networks, the principal problem of TCP lies in 
performing congestion control in case of losses that are not induced by network congestion. Since bit error 
rates are very low in wired networks, nearly all TCP versions now a day’s assume that packets losses are due 
to congestion. Consequently, when a packet is detected to be lost, either by timeout or by multiple duplicated 
ACKs, TCP slows down the sending rate by adjusting its congestion window. Unfortunately, wireless 
networks suffer from several types of losses that are not related to congestion, making TCP not adapted to 
this environment. Numerous enhancements and optimizations have been proposed over the last few years to 
improve TCP performance over one-hop wireless (not necessarily Wireless) networks.  

The rest of the paper is organized as follows: In Section 2 we describe the Traditional TCPs. Section 3 
describe the related work for TCP Performance in wireless environment and Section 4 point out the Proposed 
Work and Section 5 & 6 includes conclusion and the references. 

 

2. Traditional TCPs 

2.1. TCP TAHOE 
Tahoe refers to the TCP congestion control algorithm which was suggested by Van Jacobson. TCP is 

based on a principle of ‘conservation of packets’, i.e. if the connection is running at the available bandwidth 
capacity then a packet is not injected into the network unless a packet is taken out as well. TCP implements 
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this principle by using the acknowledgements to clock outgoing packets because an acknowledgement means 
that a packet was taken off the wire by the receiver. It also maintains a congestion window CWD to reflect 
the network capacity. However there are certain issues, which need to be resolved to ensure this equilibrium. 

• Determination of the available bandwidth. 
• Ensuring that equilibrium is maintained. 
• How to react to congestion. 

Slow Start: 
TCP packet transmissions are clocked by the incoming acknowledgements. However there is a problem 

when a connection first starts up cause to have acknowledgements you need to have data in the network and 
to put data in the network you need acknowledgements. To get around this circularity Tahoe suggests that 
whenever a TCP connection starts or re-starts after a packet loss it should go through a procedure called 
‘slow-start’. The reason for this procedure is that an initial burst might overwhelm the network and the 
connection might never get started. Slow starts suggest that the sender set the congestion window to 1 and 
then for each ACK received it increase the CWD by 1. So in the first round trip time (RTT) we send 1 packet, 
in the second we send 2 and in the third we send 4. Thus we increase exponentially until we lose a packet 
which is a sign of congestion. When we encounter congestion we decreases our sending rate and we reduce 
congestion window to one and start over again. 

Congestion Avoidance: 
 For congestion avoidance Tahoe uses ‘Additive Increase Multiplicative Decrease’. A packet loss is 

taken as a sign of congestion and Tahoe saves the half of the current window as a threshold value. It then set 
CWD to one and starts slow start until it reaches the threshold value. After that it increments linearly until it 
encounters a packet loss. Thus it increase it window slowly as it approaches the bandwidth capacity. 

The problem with Tahoe is that it takes a complete timeout interval to detect a packet loss and in fact, in 
most implementations it takes even longer because of the coarse grain timeout. Also since it doesn’t send 
immediate ACK’s, it sends cumulative acknowledgements, therefore it follows a ‘go back n ‘approach. Thus 
every time a packet is lost it waits for a timeout and the pipeline is emptied. This offers a major cost in high 
band-width delay product links. 

2.2. TCP RENO 
This Reno retains the basic principle of Tahoe, such as slow starts and the coarse grain re-transmit timer. 

However it adds some intelligence over it so that lost packets are detected earlier and the pipeline is not 
emptied every time a packet is lost. 

Reno requires that we receive immediate acknowledgement whenever a segment is received. The logic 
behind this is that whenever we receive a duplicate acknowledgment, then his duplicate acknowledgment 
could have been received if the next segment in sequence expected, has been delayed in the network and the 
segments reached there out of order or else that the packet is lost. If we receive a number of duplicate 
acknowledgements then that means that sufficient time have passed and even if the segment had taken a 
longer path, it should have gotten to the receiver by now. There is a very high probability that it was lost. So 
Reno suggests an algorithm called ‘Fast Re- Transmit’. Whenever we receive 3 duplicate ACK’s we take it 
as a sign that the segment was lost, so we re-transmit the segment without waiting for timeout. Thus we 
manage to re-transmit the segment with the pipe almost full. Another modification that RENO makes is in 
that after a packet loss, it does not reduce the congestion window to 1. Since this empties the pipe. It enters 
into an algorithm which we call ‘Fast-Re-Transmit’. 

Reno performs very well over TCP when the packet losses are small. But when we have multiple packet 
losses in one window then RENO doesn’t perform too well and its performance is almost the same as Tahoe 
under conditions of high packet loss. The reason is that it can only detect a single packet loss. If there is 
multiple packet drops then the first info about the packet loss comes when we receive the duplicate ACK’s. 
But the information about the second packet which was lost will come only after the ACK for the 
retransmitted first segment reaches the sender after one RTT. 

2.3. NEW-RENO 
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New RENO is a slight modification over TCP-RENO. It is able to detect multiple packet losses and thus 
is much more efficient that RENO in the event of multiple packet losses. 

Like Reno, New-Reno also enters into fast-retransmit when it receives multiple duplicate packets, 
however it differs from RENO in that it doesn’t exit fast-recovery until all the data which was out standing at 
the time it entered fast recovery is acknowledged. Thus it overcomes the problem faced by Reno of reducing 
the CWD multiples times. 

The fast-transmit phase is the same as in Reno. The difference in the fast recovery phase which allows 
for multiple re-transmissions in new-Reno. Whenever new-Reno enters fast recovery it notes the maximums 
segment which is outstanding.  

New-Reno suffers from the fact that it’s takes one RTT to detect each packet loss. When the ACK for the 
first retransmitted segment is received only then can we deduce which other segment was lost. 

2.4. SACK 
TCP with ‘Selective Acknowledgments’ is an extension of TCP Reno and it works around the problems 

face by TCP RENO and TCP New-Reno, namely detection of multiple lost packets, and re-transmission of 
more than one lost packet per RTT. 

SACKS retain the slow-start and fast retransmit parts of RENO. SACKS retain the slow-start and fast 
retransmit parts of RENO. It also has the coarse grained timeout of Tahoe to fall back on, in case a packet 
loss is not detected by the modified algorithm. SACK TCP requires that segments not be acknowledged 
cumulatively but should be acknowledged selectively. Thus each ACK has a block which describes which 
segments are being acknowledged. Thus the sender has a picture of which segments have been 
acknowledged and which are still outstanding. Whenever the sender enters fast recovery, it initializes a 
variable pipe which is an estimate of how much data is outstanding in the network, and it also set CWND to 
half the current size. 

Every time it receives an ACK it reduces the pipe by 1 and every time it retransmits a segment it 
increments it by 1. Whenever the pipe goes smaller than the CWD window it checks which segments are not 
received and send them. If there are no such segments outstanding then it sends a new packet . Thus more 
than one lost segment can be sent in one RTT. 

The biggest problem with SACK is that currently selective acknowledgements are not provided by the 
receiver. To implement SACK we’ll need to implement selective acknowledgment which is not a very easy 
task. 

2.5. VEGAS 
Vegas are a TCP implementation which is a modification of Reno. It builds on the fact that proactive 

measure to encounter congestion is much more efficient than reactive ones. It tried to get around the problem 
of coarse grain timeouts by suggesting an algorithm which checks for timeouts at a very efficient schedule. 
Also it overcomes the problem of requiring enough duplicate acknowledgements to detect a packet loss, and 
it also suggests a modified slow start algorithm which prevents it from congesting the network. It does not 
depend solely on packet loss as a sign of congestion. It detects congestion before the packet losses occur. 
However it still retains the other mechanism of Reno and Tahoe, and a packet loss can still be detected by the 
coarse grain timeout of the other mechanisms fail. The three major changes induced by Vegas are: 

• New Re-Transmission Mechanism 
• Congestion Avoidance 
• Modified Slow-start 

 
New Re-Transmission Mechanism: 

Vegas extend on the re-transmission mechanism of Reno. It keeps track of when each segment was sent 
and it also calculates an estimate of the RTT by keeping track of how long it takes for the acknowledgment 
to get back. Whenever a duplicate acknowledgement is received it checks to see if the (current time segment 
transmission time)> RTT estimate; if it is then it immediately retransmits the segment without waiting for 3 
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duplicate acknowledgements or a coarse timeout. Thus it gets around the problem faced by Reno of not 
being able to detect lost packets when it had a small window and it didn’t receive enough duplicate Ack’s. 

To catch any other segments that may have been lost prior to the retransmission, when a non duplicate 
acknowledgment is received, if it is the first or second one after a fresh acknowledgement then it again 
checks the timeout values and if the segment time since it was sent exceeds the timeout value then it re-
transmits the segment without waiting for a duplicate acknowledgment. Thus in this way Vegas can detect 
multiple packet losses. 

Also it only reduces its window if the re-transmitted segment was sent after the last decrease. Thus it also 
overcome Reno’s shortcoming of reducing the congestion window multiple time when multiple packets are 
lost. 

 
Congestion Avoidance: 

TCP Vegas is different from all the other implementation in its behavior during congestion avoidance. It 
does not use the loss of segment to signal that there is congestion. It determines congestion by a decrease in 
sending rate as compared to the expected rate, as result of large queues building up in the routers. Thus 
whenever the calculated rate is too far away from the expected rate it increases transmissions to make use of 
the available bandwidth, whenever the calculated rate comes too close to the expected value it decreases its 
transmission to prevent over saturating the bandwidth. Thus Vegas combats congestion quite effectively and 
doesn’t waste bandwidth by transmitting at too high a data rate and creating congestion and then cutting back, 
which the other algorithms do. 

 
Modified Slow-start: 

TCP Vegas differs from the other algorithms during its slow-start phase. The reason for this modification 
is that when a connection first starts it has no idea of the available bandwidth and it is possible that during 
exponential increase it over shoots the bandwidth by a big amount and thus induces congestion. To this end 
Vegas increases exponentially only every other RTT, between that it calculates the actual sending through 
put to the expected and when the difference goes above a certain threshold it exits slow start and enters the 
congestion avoidance phase. 

3. Related Work 
Several efforts for improving the performance of TCP in multi-hop wireless networks have recently been 

reported. The problem of TCP performance and degradation over multi-hop wireless network due to the 
conflict between data packets and acknowledgments are identified in [1].Also because of the impact of the 
MAC protocol on performance of TCP in multi-hop networks. The TCP throughput decreases exponentially 
as the number of hop increases due to hidden terminal problem, which increases the packet collision. Similar 
problems were evaluated in [2] where the authors show that using smaller values for both packet size and 
maximum window size in TCP setup can mitigate such problems to some extent. Several implementations of 
TCP are analyzed in [3] and they discovered that the throughput of TCP depends on the number of hops in 
the path as well as the performance of underlying routing protocol.  

An end to-end combination scheme is evaluated in [4] to improve TCP throughput over multi-hop 
wireless network. In literature, different approaches focused on improving the throughput of TCP over multi-
hop wireless networks have been described. Although much research has been done on improving TCP 
performance, only few approaches have been proposed for improving TCP performance in wireless mesh 
networks. A multi-channel assignment algorithm is proposed in [5] for constructing a wireless mesh network 
which eliminates the hidden terminal problem and thereby improving the performance of TCP in wireless 
multi-hop networks. A pacing scheme is proposed in [6] at the IP layer to improve the fairness in hybrid 
wireless/ wired networks. Gambiroza, Sadeghi and Edward [7][8][9] studied TCP performance in wireless 
mesh networks and they proposed a distributed link layer algorithm for achieving fairness among TCP flows. 
These approaches do not have a mechanism to avoid retransmission timeout caused by retransmission loss. 
Our proposed algorithm constitutes a modification at the transport layer in sender side rather than a 
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modification at the link layer for improving the performance of TCP by avoiding the frequent retransmission 
timeout in multi-hop wireless mesh networks. 

4. Proposed Work 
To overcome the throughput degradation of TCP in multihop wireless mesh networks, we modified the 

fast retransmit and recovery algorithms of TCP NewReno. The key idea of our algorithm is to calculate the 
outstanding packets and set the value of slow start threshold (ssthresh) based on half of the difference 
between maximum data packets sent and the last acknowledgment received at the TCP sender.  

We used this difference for minimizing the frequent retransmission timeouts caused by retransmission 
loss. The value of ssthresh is used to determine whether the TCP should do Slow Start or Congestion 
Avoidance. TCP SAC adopts Slow Start and Congestion Avoidance of TCP NewReno and modifies Fast 
Retransmit and Recovery algorithms. 

5. Conclusion 
TCP assumes any packet loss as an indication of congestion, and provides two methods to detect packet 

loss: fast retransmits for light congestion, and retransmission timeouts (RTO) for heavy congestion. If TCP 
receives three successive duplicate acknowledgements, it halves its congestion window size assuming a 
packet is lost due to light congestion. If a TCP sender does not receive a new ACK before the retransmission 
timeout expires, it initializes its congestion window size to one segment assuming a packet is lost due to 
heavy congestion. 

 In this paper we first survey about the main challenges faced by the TCP in Wireless Mesh Network. 
All this challenges are sometime the reasons for the packet losses in the network. There are many traditional 
algorithms which are used for congestion avoidance in the network. To avoid the Performance degradation 
of TCP in the wireless network the new algorithm is proposed. 
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