
2011 International Conference on Computer Communication and Management
Proc .of CSIT vol.5 (2011) © (2011) IACSIT Press, Singapore

TCP over Multi-Hop Wireless Mesh Network

Sumedha Chokhandre 1, Urmila Shrawankar 2
1 G. H. Raisoni College of Engineering, Nagpur, India.
2 G. H. Raisoni College of Engineering, Nagpur, India.

Abstract. The Transmission Control Protocol (TCP) was designed to provide reliable end-to-end delivery
of data over unreliable networks. Traditionally TCP was designed and optimized only for wired networks.
Ignoring the properties of wireless Networks, TCP can be implemented with poor performance. In order to
adapt TCP to wireless environment, improvements have been proposed in the literature to help TCP to
differentiate between the different types of losses. Indeed, in wireless networks losses are not always due to
network congestion, as it is mostly the case in wired networks. Here we present an overview of this issue and
a detailed discussion of the major factors involved. In addition, we survey the main proposals which aim at
increasing the TCP performance in the wireless environments.

Keywords: Wireless Mesh Network, TCP Performance, Packet Loss, Congestion.

1. Introduction
Wireless mesh networks (WMN) are rapidly emerging as a promising complement to existing broadband

access infrastructures, because they extend wireless local area network (WLAN) access beyond traditional
hotspot areas to enhance coverage and provide seamless mobility. In WMNs, all communications between
mesh network nodes are over radio links. Applications of WMNs include backhaul for broadband access
networks, metropolitan area mobile networks, and citywide surveillance systems.

TCP (Transmission Control Protocol) was designed to provide reliable end-to-end delivery of data over
unreliable networks. In theory, TCP should be independent of the technology of the underlying infrastructure.
In particular, TCP should not care whether the Internet Protocol (IP) is running over wired or wireless
connections. In practice, it does matter because most TCP deployments have been carefully designed based
on assumptions that are specific to wired networks. Ignoring the properties of wireless transmission can lead
to TCP implementations with poor performance. In wireless networks, the principal problem of TCP lies in
performing congestion control in case of losses that are not induced by network congestion. Since bit error
rates are very low in wired networks, nearly all TCP versions now a day’s assume that packets losses are due
to congestion. Consequently, when a packet is detected to be lost, either by timeout or by multiple duplicated
ACKs, TCP slows down the sending rate by adjusting its congestion window. Unfortunately, wireless
networks suffer from several types of losses that are not related to congestion, making TCP not adapted to
this environment. Numerous enhancements and optimizations have been proposed over the last few years to
improve TCP performance over one-hop wireless (not necessarily Wireless) networks.

The rest of the paper is organized as follows: In Section 2 we describe the Traditional TCPs. Section 3
describe the related work for TCP Performance in wireless environment and Section 4 point out the Proposed
Work and Section 5 & 6 includes conclusion and the references.

2. Traditional TCPs

2.1. TCP TAHOE
Tahoe refers to the TCP congestion control algorithm which was suggested by Van Jacobson. TCP is

based on a principle of ‘conservation of packets’, i.e. if the connection is running at the available bandwidth
capacity then a packet is not injected into the network unless a packet is taken out as well. TCP implements

461

this principle by using the acknowledgements to clock outgoing packets because an acknowledgement means
that a packet was taken off the wire by the receiver. It also maintains a congestion window CWD to reflect
the network capacity. However there are certain issues, which need to be resolved to ensure this equilibrium.

• Determination of the available bandwidth.
• Ensuring that equilibrium is maintained.
• How to react to congestion.

Slow Start:
TCP packet transmissions are clocked by the incoming acknowledgements. However there is a problem

when a connection first starts up cause to have acknowledgements you need to have data in the network and
to put data in the network you need acknowledgements. To get around this circularity Tahoe suggests that
whenever a TCP connection starts or re-starts after a packet loss it should go through a procedure called
‘slow-start’. The reason for this procedure is that an initial burst might overwhelm the network and the
connection might never get started. Slow starts suggest that the sender set the congestion window to 1 and
then for each ACK received it increase the CWD by 1. So in the first round trip time (RTT) we send 1 packet,
in the second we send 2 and in the third we send 4. Thus we increase exponentially until we lose a packet
which is a sign of congestion. When we encounter congestion we decreases our sending rate and we reduce
congestion window to one and start over again.

Congestion Avoidance:
 For congestion avoidance Tahoe uses ‘Additive Increase Multiplicative Decrease’. A packet loss is

taken as a sign of congestion and Tahoe saves the half of the current window as a threshold value. It then set
CWD to one and starts slow start until it reaches the threshold value. After that it increments linearly until it
encounters a packet loss. Thus it increase it window slowly as it approaches the bandwidth capacity.

The problem with Tahoe is that it takes a complete timeout interval to detect a packet loss and in fact, in
most implementations it takes even longer because of the coarse grain timeout. Also since it doesn’t send
immediate ACK’s, it sends cumulative acknowledgements, therefore it follows a ‘go back n ‘approach. Thus
every time a packet is lost it waits for a timeout and the pipeline is emptied. This offers a major cost in high
band-width delay product links.

2.2. TCP RENO
This Reno retains the basic principle of Tahoe, such as slow starts and the coarse grain re-transmit timer.

However it adds some intelligence over it so that lost packets are detected earlier and the pipeline is not
emptied every time a packet is lost.

Reno requires that we receive immediate acknowledgement whenever a segment is received. The logic
behind this is that whenever we receive a duplicate acknowledgment, then his duplicate acknowledgment
could have been received if the next segment in sequence expected, has been delayed in the network and the
segments reached there out of order or else that the packet is lost. If we receive a number of duplicate
acknowledgements then that means that sufficient time have passed and even if the segment had taken a
longer path, it should have gotten to the receiver by now. There is a very high probability that it was lost. So
Reno suggests an algorithm called ‘Fast Re- Transmit’. Whenever we receive 3 duplicate ACK’s we take it
as a sign that the segment was lost, so we re-transmit the segment without waiting for timeout. Thus we
manage to re-transmit the segment with the pipe almost full. Another modification that RENO makes is in
that after a packet loss, it does not reduce the congestion window to 1. Since this empties the pipe. It enters
into an algorithm which we call ‘Fast-Re-Transmit’.

Reno performs very well over TCP when the packet losses are small. But when we have multiple packet
losses in one window then RENO doesn’t perform too well and its performance is almost the same as Tahoe
under conditions of high packet loss. The reason is that it can only detect a single packet loss. If there is
multiple packet drops then the first info about the packet loss comes when we receive the duplicate ACK’s.
But the information about the second packet which was lost will come only after the ACK for the
retransmitted first segment reaches the sender after one RTT.

2.3. NEW-RENO

462

New RENO is a slight modification over TCP-RENO. It is able to detect multiple packet losses and thus
is much more efficient that RENO in the event of multiple packet losses.

Like Reno, New-Reno also enters into fast-retransmit when it receives multiple duplicate packets,
however it differs from RENO in that it doesn’t exit fast-recovery until all the data which was out standing at
the time it entered fast recovery is acknowledged. Thus it overcomes the problem faced by Reno of reducing
the CWD multiples times.

The fast-transmit phase is the same as in Reno. The difference in the fast recovery phase which allows
for multiple re-transmissions in new-Reno. Whenever new-Reno enters fast recovery it notes the maximums
segment which is outstanding.

New-Reno suffers from the fact that it’s takes one RTT to detect each packet loss. When the ACK for the
first retransmitted segment is received only then can we deduce which other segment was lost.

2.4. SACK
TCP with ‘Selective Acknowledgments’ is an extension of TCP Reno and it works around the problems

face by TCP RENO and TCP New-Reno, namely detection of multiple lost packets, and re-transmission of
more than one lost packet per RTT.

SACKS retain the slow-start and fast retransmit parts of RENO. SACKS retain the slow-start and fast
retransmit parts of RENO. It also has the coarse grained timeout of Tahoe to fall back on, in case a packet
loss is not detected by the modified algorithm. SACK TCP requires that segments not be acknowledged
cumulatively but should be acknowledged selectively. Thus each ACK has a block which describes which
segments are being acknowledged. Thus the sender has a picture of which segments have been
acknowledged and which are still outstanding. Whenever the sender enters fast recovery, it initializes a
variable pipe which is an estimate of how much data is outstanding in the network, and it also set CWND to
half the current size.

Every time it receives an ACK it reduces the pipe by 1 and every time it retransmits a segment it
increments it by 1. Whenever the pipe goes smaller than the CWD window it checks which segments are not
received and send them. If there are no such segments outstanding then it sends a new packet . Thus more
than one lost segment can be sent in one RTT.

The biggest problem with SACK is that currently selective acknowledgements are not provided by the
receiver. To implement SACK we’ll need to implement selective acknowledgment which is not a very easy
task.

2.5. VEGAS
Vegas are a TCP implementation which is a modification of Reno. It builds on the fact that proactive

measure to encounter congestion is much more efficient than reactive ones. It tried to get around the problem
of coarse grain timeouts by suggesting an algorithm which checks for timeouts at a very efficient schedule.
Also it overcomes the problem of requiring enough duplicate acknowledgements to detect a packet loss, and
it also suggests a modified slow start algorithm which prevents it from congesting the network. It does not
depend solely on packet loss as a sign of congestion. It detects congestion before the packet losses occur.
However it still retains the other mechanism of Reno and Tahoe, and a packet loss can still be detected by the
coarse grain timeout of the other mechanisms fail. The three major changes induced by Vegas are:

• New Re-Transmission Mechanism
• Congestion Avoidance
• Modified Slow-start

New Re-Transmission Mechanism:

Vegas extend on the re-transmission mechanism of Reno. It keeps track of when each segment was sent
and it also calculates an estimate of the RTT by keeping track of how long it takes for the acknowledgment
to get back. Whenever a duplicate acknowledgement is received it checks to see if the (current time segment
transmission time)> RTT estimate; if it is then it immediately retransmits the segment without waiting for 3

463

duplicate acknowledgements or a coarse timeout. Thus it gets around the problem faced by Reno of not
being able to detect lost packets when it had a small window and it didn’t receive enough duplicate Ack’s.

To catch any other segments that may have been lost prior to the retransmission, when a non duplicate
acknowledgment is received, if it is the first or second one after a fresh acknowledgement then it again
checks the timeout values and if the segment time since it was sent exceeds the timeout value then it re-
transmits the segment without waiting for a duplicate acknowledgment. Thus in this way Vegas can detect
multiple packet losses.

Also it only reduces its window if the re-transmitted segment was sent after the last decrease. Thus it also
overcome Reno’s shortcoming of reducing the congestion window multiple time when multiple packets are
lost.

Congestion Avoidance:

TCP Vegas is different from all the other implementation in its behavior during congestion avoidance. It
does not use the loss of segment to signal that there is congestion. It determines congestion by a decrease in
sending rate as compared to the expected rate, as result of large queues building up in the routers. Thus
whenever the calculated rate is too far away from the expected rate it increases transmissions to make use of
the available bandwidth, whenever the calculated rate comes too close to the expected value it decreases its
transmission to prevent over saturating the bandwidth. Thus Vegas combats congestion quite effectively and
doesn’t waste bandwidth by transmitting at too high a data rate and creating congestion and then cutting back,
which the other algorithms do.

Modified Slow-start:

TCP Vegas differs from the other algorithms during its slow-start phase. The reason for this modification
is that when a connection first starts it has no idea of the available bandwidth and it is possible that during
exponential increase it over shoots the bandwidth by a big amount and thus induces congestion. To this end
Vegas increases exponentially only every other RTT, between that it calculates the actual sending through
put to the expected and when the difference goes above a certain threshold it exits slow start and enters the
congestion avoidance phase.

3. Related Work
Several efforts for improving the performance of TCP in multi-hop wireless networks have recently been

reported. The problem of TCP performance and degradation over multi-hop wireless network due to the
conflict between data packets and acknowledgments are identified in [1].Also because of the impact of the
MAC protocol on performance of TCP in multi-hop networks. The TCP throughput decreases exponentially
as the number of hop increases due to hidden terminal problem, which increases the packet collision. Similar
problems were evaluated in [2] where the authors show that using smaller values for both packet size and
maximum window size in TCP setup can mitigate such problems to some extent. Several implementations of
TCP are analyzed in [3] and they discovered that the throughput of TCP depends on the number of hops in
the path as well as the performance of underlying routing protocol.

An end to-end combination scheme is evaluated in [4] to improve TCP throughput over multi-hop
wireless network. In literature, different approaches focused on improving the throughput of TCP over multi-
hop wireless networks have been described. Although much research has been done on improving TCP
performance, only few approaches have been proposed for improving TCP performance in wireless mesh
networks. A multi-channel assignment algorithm is proposed in [5] for constructing a wireless mesh network
which eliminates the hidden terminal problem and thereby improving the performance of TCP in wireless
multi-hop networks. A pacing scheme is proposed in [6] at the IP layer to improve the fairness in hybrid
wireless/ wired networks. Gambiroza, Sadeghi and Edward [7][8][9] studied TCP performance in wireless
mesh networks and they proposed a distributed link layer algorithm for achieving fairness among TCP flows.
These approaches do not have a mechanism to avoid retransmission timeout caused by retransmission loss.
Our proposed algorithm constitutes a modification at the transport layer in sender side rather than a

464

modification at the link layer for improving the performance of TCP by avoiding the frequent retransmission
timeout in multi-hop wireless mesh networks.

4. Proposed Work
To overcome the throughput degradation of TCP in multihop wireless mesh networks, we modified the

fast retransmit and recovery algorithms of TCP NewReno. The key idea of our algorithm is to calculate the
outstanding packets and set the value of slow start threshold (ssthresh) based on half of the difference
between maximum data packets sent and the last acknowledgment received at the TCP sender.

We used this difference for minimizing the frequent retransmission timeouts caused by retransmission
loss. The value of ssthresh is used to determine whether the TCP should do Slow Start or Congestion
Avoidance. TCP SAC adopts Slow Start and Congestion Avoidance of TCP NewReno and modifies Fast
Retransmit and Recovery algorithms.

5. Conclusion
TCP assumes any packet loss as an indication of congestion, and provides two methods to detect packet

loss: fast retransmits for light congestion, and retransmission timeouts (RTO) for heavy congestion. If TCP
receives three successive duplicate acknowledgements, it halves its congestion window size assuming a
packet is lost due to light congestion. If a TCP sender does not receive a new ACK before the retransmission
timeout expires, it initializes its congestion window size to one segment assuming a packet is lost due to
heavy congestion.

 In this paper we first survey about the main challenges faced by the TCP in Wireless Mesh Network.
All this challenges are sometime the reasons for the packet losses in the network. There are many traditional
algorithms which are used for congestion avoidance in the network. To avoid the Performance degradation
of TCP in the wireless network the new algorithm is proposed.

6. References
[1] Abhinav Gupta, Ian Wormsbecker and Carey Williamson, “Eperimental Evaluation of TCP Performance in Multi-

hop Wireless Ad Hoc Networks”, Proc. IEEE MASCOTS, 2004.

[2] Mario Gerla, Ken tang and Rajive Bagrodia, “TCP Performance in Wireless Multi-hop Networks”, Proc.IEEE
WMCSA, 1999.

[3] E.Altman and T.Jimenezl,”Novel Delayed Ack Techniques for improving TCP performance in Multi-Hop
Wireless Networks”, Proc. of Personal Wireless Communication, 2003.

[4] S. Xu and T. Saadawi. ,”Performance evaluation of TCP algorithms in multi-hop wireless packet networks”
Wireless Communications and Mobile Computing, 2001.

[5] Michelle Berger,”A performance Comparison of TCP protocols over Mobile Ad Hoc Networks”,Proc. IEEE
CERMA,2006.

[6] Wei Ren and Hai Jini. ,”A Combination Scheme to Improve TCP Throughput over Multihops Wireless Mobile Ad
Hoc Networks”,LNCS, PP.805-809,2006.

[7] Li-Ping Tung and Wei-Kuan Shih,”TCP Throughput Enhancement over Wireless Mesh Network”, IEEE
Communication magazine, 2007.

[8] L. Yang, K.G.Seah and Q.Yin., “Improving fairness among TCP flows crossing Wireless Ad Hoc and Wired
Networks”, Proc.ACM MobiHoc, 2003.

[9] V. Gambiroza, B. Sadeghi and Edward, “End-to-End Performance and fairness in multihop wireless backhaul
networks”, Proc. ACM MOBICOM, 2004.

465

