
2011 International Conference on Computer Communication and Management
Proc .of CSIT vol.5 (2011) © (2011) IACSIT Press, Singapore

Deadlock Detection and Resolution in Neighbour Replication on Grid

Noriyani Mohd Zin, A.Noraziah, A.H. Beg, Ainul Azila Che Fauzi

Faculty of Computer System & Software Engineering, Universiti Malaysia Pahang, Pahang, Malaysia

Abstract. Distributed database system has a collection of sites that will increase the data availability,
reliability of data and the execution speed in less time. However, the management on transaction is important
in managing deadlock problems. In this paper presents a new algorithm to manage transaction on neigbour
replication in distributed database system. The Neighbour Replication on Grid (NRG) Deadlock Detection
(NRGDD) is the algorithm developed based on the Multi-Cycle Deadlock Detection and Recovery (MC2DR)
approach. This algorithm will detect and resolve the deadlock problem that occurs during the transaction.
Each node of the different set of transactions will communicate by passing the probe message to each other.
To resolve deadlock problem only one node that will be detect as a victim that cause of deadlock occur and
this node will be abort and release that site to another transaction to obtain the lock. Finally, this algorithm
successfully implemented on NRG model that can detect and resolve the deadlock problems.

Keywords: Distributed Databases, Replication, NRG Replication Model, Deadlock Detection and
Resolution.

1. Introduction
In distributed database system has a collection of sites that interconnected via communication network.

Through this system it will increase the data availability, reliability of data and increased the execution speed
in less time. A distributed database system allows applications to access data from local and remote
databases [1]. In this system, several characteristics are considered such as: (1) provides an interface to
user which is transparent to where the data actually resides; (2) ability to locate the data; (3) network-
wide concurrency control and recovery procedures; (4) translation of queries and data between
heterogeneous systems [2]. In this system, to access data item simultaneously must be synchronous to
preserve the data consistency. Replication is a technique use in distributed database that will replicate the
data in several sites. If one of the nodes has failed, it will failed independently and not affect to others node.
Consequently, the data replication will improve the reliability, availability and performance of the data.
Replication in distributed environment receives particular attention for providing efficient access to data,
fault tolerance and enhance the performance of the system [3-5].

In order to manage the transaction management, the concurrency control and deadlock detection is the
most important problem that must have a powerful attention when sharing in distributed systems [6]. The
lock mechanism is use when the transaction make request to get a data. If the data is available, the
transaction that make a request will get a lock for that data, otherwise it will wait until the data is unlock or
released then it can be acquired again. In this situation, a deadlock may occur in which every transaction
involve in the deadlock are waiting to grant the data that has been lock by other transaction that make a
circular wait until an action is taken to detect and resolve deadlock problems.

Deadlock detection is very difficult in a distributed database system because no controller has complete
and current information about the system and data dependencies [8]. The proposed algorithm in [8] does not
detect any false deadlock or exclude any really existing deadlocks and in this technique global deadlock is
not dependent on the local deadlock. It based on creating Linear Transaction Structure (LTS), Distributed
Transaction Structure (DTS) and local global abortion.

+ Noriyani Mohd Zin. Tel.: +6095492121; fax: +6095492144.
 E-mail address: noriyanimz@gmail.com.

In [9] has proposed an efficient deadlock detection (EDD) algorithm that detect deadlock based on based on
threads, processes which are acquired, released or stopped and which thread wait for the other and causes the
deadlock [9]. The structure that represents the relation between resources and threads (processes) for faster
and accurate detection has been introduce in this paper for efficient deadlock detection. This algorithm can

426

detect only the present of real deadlocks that will coordinate the share resources in order to use the minimum
time to detect deadlocks [9]. In [7] proposed multi-cycle deadlock detection and recovery (MC2DR)
algorithm contributes that its (i) can detect all deadlocks reachable from the initiator of the algorithm in
single execution, even though the initiator does not belong to any deadlock, (ii) it can detect multi-cycle
deadlocks i.e., deadlocks where a single process is involved in many deadlock cycles, (iii) it decrease the
deadlock detection algorithm initiations, phantom deadlock detections, deadlock detection duration and the
number of useless messages and (iv) it provides with an efficient deadlock resolution methods.

In this paper, the new algorithm will be produced based on the MC2DR algorithm that will expand in the
Neighbour Replication on Grid (NRG) replication model. NRG has been proposed in our previous work [10].
NRG is treading a new path in replication that helps to maximize the write availability with low
communication cost due to the minimum number of quorum size required. The purpose of this research is to
show how the new algorithm can detect the existence of real deadlock and resolve it.

The rest of the paper is organized as follows. In Section 2, presents deadlock detection and resolution
transaction model. The implementation processing and expected outcomes will be shows in Section 3.
Section 4 concludes the paper and Section 5 is acknowledgement.

2. Transaction Model
The transaction become stuck because of the deadlock has occur when different set of transaction

waiting for each other to obtain the same resource. In this section will present NRG deadlock detection
(NRGDD) transaction model.

A. NRGDD Transaction Model Notation

In this section, we defined the following notations:
a) T is a transaction
b) D is the union of all data object manages by all transaction T of NRG and x represents one data

object (or data file) in D to be modified by an element of Tα, Tβ, Tγ, Tδ, and Tθ.
c) λ = α, β, γ, δ, θ where it represent different group for the transaction T.
d) PM is a probe message. It contain a set of probe messages where PM = {InitID, VictimID, DepCnt,

RouteString}. See Table 1.
Table 1: Probe Message.

e) NRG transaction elements Tα = {Tαx,PM | PM=InitID, VictimID, DepCnt, RouteString} where Tαx,PM is
a probe message elements of Tα transaction.

f) NRG transaction elements Tβ = {Tβx,PM | PM=InitID, VictimID, DepCnt, RouteString} where Tβx,PM is
a probe message elements of Tβ transaction.

g) NRG transaction elements Tγ = {Tγx,PM | PM=InitID, VictimID, DepCnt, RouteString} where Tγx,PM is
a probe message elements of Tγ transaction.

h) NRG transaction elements Tδ = {Tδx,PM | PM=InitID, VictimID, DepCnt, RouteString} where Tδx,PM is
a probe message elements of Tδ transaction.

i) NRG transaction elements Tθ = {Tθx,PM | PM=InitID, VictimID, DepCnt, RouteString} where Tθx,PM is
a probe message elements of Tθ transaction.

j) Each node or transaction has a probe message storage structure also known as ProbeS, at most one
probe message will be store on ProbeS at particular time. The history of ProbeS is independent;
when the deadlock has been detected the probe message is erased from ProbeS.

k) Transaction Tλx,PM that detects the deadlock send a victim message to the transaction found to be
victimized for the deadlock resolution. Victim message will be used for deleting probes from
respective storage entries.

NRGDD transaction model consider different set of transactions Tα, Tβ, Tγ, Tδ, and Tθ. All elements Tα, Tβ, Tγ,
Tδ, and Tθ may request data object x simultaneously at any site of S(B) either at the same or different site.

Probe Message Descriptions
InitID Contains the identity of initiator of the algorithm
VictimID A node or transaction that detects the deadlock sends the victim message to the node

or transaction that cause of deadlock occurs. This node will be victimized for
deadlock resolution.

DepCnt The number of successor represent as a node or transaction which is waiting for
resource.

RouteString The node or transaction IDs visited by another node‘s (transaction’s) probe message
in order.

427

Each set of transactions communicate with each other by message passing. Each of them bring the elements
of probe message or PM where PM={InitID, VictimID, DepCnt, RouteString}. At most one probe message
will be store in probe storage, ProbeS.

Fig. 1: Different set of transaction request a different site.

An Illustration Example: Let us illustrate the working of new algorithm for detecting deadlock, through an
example. Consider the situation shown in Fig. 1. A different set of transactions Tα, Tβ, Tγ, Tδ, and Tθ request a
lock from a set of sited where S(Bx) = {J, F, I, K, N}. Each site contain replicated of data x. If the transaction
of Tαx,PM get lock from site i Є S(Bx) and other transaction will get lock from other site j Є S(Bx) | j ≠ i. Each
sites i Є S(Bx) has its own lock manager (LM) that process a request for a lock from the transaction either the
lock can be granted or not. If the lock is free, it is granted immediately otherwise, the lock manager will send
a reject message and inserts the requesting transaction or node ID into the waiting list for the lock [7]. Each
node is uniquely identified by its {site id:process id} pair and for the simplicity of explanation a unique
number has assigned using integer numbers (0, 1, 2, 3, ..., n)to all transaction or node. The transactions or
nodes will create elements of probe message (InitID, VictimID, DepCnt, and RouteString).

3. Implementation
In this section, we present the implementation of the system. The purpose of this implementation is to

illustrate that our system can detect and resolve deadlock problems.

Fig. 2: A cluster with sixteen replication server.

In implementation phase, based on the NRG model [10] we use a cluster with nine replication server that
are logically connected to each other in the form of two-dimensional 3 x 3 grid structure shows in Fig. 2.

Fig. 3: Different set of transaction request a different site.

Data x in site X will be replicate to each site that adjacent with site X, which is site B, D, F and H.
Without lost of generality, five different set of transaction Tα, Tβ, Tγ, Tδ, and Tθ come to update data x at
replica B, D, X, F, and H in the absence of system failures shows in Fig. 3.

N

F

J

K

I Tαx, PM

Tγx, PMTβx, PM

Tδx, PMTθx, PM

H

B

X

F

DTαx, PM

Tγx, PM Tβx, PM

Tδx, PMTθx, PM

A B C

D X F

G H I

x

x

x

x

x

428

Fig. 4: Different set of transactions wait for each other.

The Fig. 4 shows that each transaction waiting for each other to obtain the lock. Without lost of
generality assume that each transaction as a node that brings the probe message. Each node of transaction has
its own node ID (0, 1, 2, 3) that shown in Fig. 4. Node 0, Tαx,PM(0,0,1,”0”) has initiated the lock that waiting for
another node, node 1. Node 1, Tβx,PM(0,1,2,”01”) is waiting for node 2, node 2, Tδx,PM(0,1,2,”012”) is waiting for node
3 and node 3, Tγx,PM(0,1,2,”0123”) is waiting for node 1. In forwarding the probe message to other nodes, a node
must check the emptiness of its ProbeS first. If it is found to be empty (i.e.,ill now no probe message is
forwarded by this node), then it compares its own DepCnt value with probe’s DepCnt value [7]. If this
node’s DepCnt is higher, then probe’s VictimID and DepCnt values are updated with this node’s ID and
DepCnt values respectively; otherwise the values are kept intact. Before forwarding the probe message to all
successors (the node that it’s waiting) of this node, probe’s RouteString field is updated by appending this
node’s ID at last of existing string (i.e., concatenate operation). One copy of updated probe message is saved
in ProbeS of this node. In Fig. 4 node 0 has initiated execution and send probe message (0,0,1,“0”) to its
successor node 1. As node 1’s ProbeS is empty and DepCnt value is 1, the probe message is not update and
store probe message as (0,1,1,“01”) in ProbeS and forwarded to its successors or node 2. Nodes 2 and 3 have
updated only the RouteS field of the probe message and forwarded to their successors.

Fig. 5: Cycle of Deadlock

Deadlock is detected when RouteString of node 3, Tγx,PM(0,1,2,”0123”) prefix with node 1, Tβx,PM(0,1,2,”01”) that
start with “01” as shown in Fig. 5. When the deadlock is detected and the probe message will discard by the
node that has detected a deadlock. Node 1 in Fig. 5 got back its forwarded probe and detected one deadlock
cycles {1, 2, 3,1}. Deadlock will be resolve by aborting at least one node that involve in deadlock. In [7]
selects the node with highest DepCnt value as victim and the deadlock detector node sends a victim message
to all successors. If the detector node is not the initiator, it also sends the victim message to all simply
blocked (node that is blocked but not a member of deadlock cycle) nodes [7]. On reception of this message,
the victim node first forwards it to all of its successors and then releases all locks held by it and killed itself,
other nodes delete deadlock detection information from their ProbeS memories [7]. Node 1 has detected as a
victim because it has the highest DepCnt value amongst the members in any of the cycles. And to resolve the
deadlock detection, node 1 as a victim kill itself or abort the lock and released it to another nodes. Node 1 is
not the initiator, so it has also sent the victim message to simply blocked node 0. Nodes 3 stop further
propagation of victim message. The Table 2 shows the experiment result that the NRGDD can detect and
resolve the deadlock problems.

0

1

2

3

Tαx,PM(0,0,1,”0”)

Tβx,PM(0,1,1,”01”)

Tδx,PM(0,1,1,”012”)

Tγx,PM(0,1,1,”0123”)

1

2

3Tβx,PM(0,1,1,”01”)

Tδx,PM(0,1,1,”012”)

Tγx,PM(0,1,1,”0123”)

429

Table 2: The Experiment Result

4. Conclusion

Managing transaction in distributed databases is important in order to ensure the transaction can occur
properly. This paper presents a new algorithm to manage transaction on neighbour replication in
distributed database system. Deadlock will occur on the transaction which is different set of transactions
may required the same resources that obtain by another transaction. NRGDD has resolve the deadlock
problem by sending the minimum number of probe message to detect the deadlock and it can resolve the
deadlock to ensure the transaction can be done smoothly.

5. Acknowledgement
This work has been supported by the University Malaysia Pahang under grant RDU090306.

6. References
[1] Oracle, Release 2(9/2). Oracle9i Heterogeneous Connectivity Administrator's Guide. Oracle Copyright © 2001,

2002 Oracle Corporation.
[2] Shashi Bhushan, R. B. Patel and Mayank Dave. A Secure Time-Stamp Based Concurrency Control Protocol for

Distributed Databases. Journal of Computer Science. Vol. 3, No.7, pp. 561-565, 2007.
[3] Gao, M. Dahlin, A. Nayate, J. Zheng and A. Iyengar. Improving Availability and Performance with Application-

Specific Data Replication. IEEE Trans. Knowledge and Data Engineering. Vol. 17, No. 1, pp. 106-200, 2005.
[4] A.Noraziah, M. Mat Deris, Man, R.Norhayati, M.Rabiei, W.N.W. Shuhadah. Managing Transaction on Grid-

Neighbour Replication in Distributed System. International Journal of Computer Mathematics. Vol. 86, No. 9, pp.
1-10, Sept 2008, DOI:10.1080/00207160801965198.

[5] B.M. Monjurul Alom, Frans Henskens, Michael Hannaford. Optimization Of Detected Deadlock View of
Distributed Database. 2010 International Conference on Data Storage and Data Engineering, 978-0-7695-3958-
4/10 $26.00 © 2010 IEEE, DOI 10.1109/DSDE.2010.41.

[6] M. Tang, B. S. Lee, X. Tang and C. K. Yeo. The impact on data replication on Job Scheduling Performance in the
Data Grid. International Journal of Future Generation of Computer Systems. Elsevier (22), pp. 254-268, 2006.

[7] Md. Abdur Razzaque, Md. Mamun-Or-Rashid, Choong Seon Hong. MC2DR: Multi cycle Deadlock Detection and
Recovery Algorithm for Distributed Systems. R. Perrot et al. (Eds.): HPCC 2007, LNCS 4728, pp. 554-565, 2007
© Springer- Verlag Berlin Heidelberg 2007.

[8] B.M. Monjurul Alom, Frans Henskens, Michael Hannaford. Deadlock Detection Views of Distributed Database.
2009 Sixth International Conference on Information Technology: New Generations. 978-0-7695-3596-8/09 $25.00
© 2009 Crown Copyright, DOI 10.1109/ITNG.2009.220.

[9] Aida. O. Abd El-Gwad, Ahmed. I. Saleh, Mai. M. Abd-ElRazik. A Novel Scheduling Strategy for an Efficient
Deadlock Detection. 978-1-4244-5844-8/09/$26.00 © 2009 IEEE.

[10] Noraziah Ahmad. Neighbour Replica Failure Semantic Using NRTM in Distributed Environment. International
Conference on SE & SCS 2009, Malaysia. Vol. 1, No. 1, pp. 530-533, Oct 2009.

Replica Time X B H D
t1 unlock(x) unlock(x) unlock(x) unlock(x)
t2 Begin_transaction Begin_transaction Begin_transaction Begin_transaction
t3 Write lock(x), counter _w =1 Write lock(x), counter _w =1 Write lock(x), counter _w =1 Write lock(x), counter _w =1
t4 wait Wait Wait wait
t5 Tαx,PM(0,0,1,”0”)

Propagate lock: B
Tβx,PM(0,1,1,”01”)
Propagate lock: I

Tδx,PM(0,1,1,”012”)
Propagate lock: D

Tγx,PM(0,1,1,”0123”)
Propagate lock: B

t6 wait wait wait wait
t7 Detect deadlock which is

RouteString prefix with
Tβx,PM(0,1,2,”01”), send victim
message: Tβx,PM(0,1,2,”01”)

t8 Receive Victim message
t9 Propagate victim message:

X, D
 Stop propagate victim

message
t10 Receive victim message Receive victim message Receive victim message
t11 abort or kill: Tβx,PM(0,1,2,”01”)
t12 Released Released: B Wait to lock D Release: D

430

