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Abstract.  In this paper, stream water quality control process is considered. The system is represented by a 
constrained nonlinear interconnected dynamical model with time delay. By decomposing the system into a set of 
subsystems, a partially closed loop decentralized controller is developed which leads to a suboptimal system 
performance while satisfying system constraints. The developed procedure is applied to a typical nonlinear stream 
water quality control system and the obtained results show the effectiveness of the presented approach.  
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1. Introduction  
      Distributed interconnected systems form an important class of problems that control engineers are faced 
with. These systems are often characterized by their nonlinear dynamic behavior, large dimensionality, time 
delay and system constraints on the states and/or inputs. Decomposing such systems into smaller 
interconnected subsystems provides a less complex and more efficient way to deal with the overall problem. 
A special type of this class of systems are those characterized by their sequential nature (e.g. traffic networks, 
production lines, rivers, etc.), in which the response of the system at any section is directly affected by the 
behavior of the preceding section(s).  
    Under the assumption that optimal control problems associated with these systems have a feasible 
solution, it is obvious that controllers designed in a global sense lead to an optimal performance. However, 
for geographically spread systems, the initial cost of implementing globally optimal controllers tends to be 
quite high. More importantly, reduced system reliability is apparent since such types of systems are often 
subject to structural perturbations. 
      On the other hand, although decentralized controllers lead to suboptimal system performance, they need 
no transfer of information between subsystems, thus such an approach is economical, reduces 
communication overhead and increases system reliability.   
   Although constrained linear quadratic problems (LQP) have attracted many researchers in the last decades, 
few of them have tackled nonlinear constrained dynamical systems. Among the techniques developed to 
solve LQP are those falling into the class of model predictive control [1-2] and references therein, anti-wind 
up approach for which we quote [3] and references therein, coordinating based approach  and time delayed 
systems [4-6] and references therein. A number of researchers have attempted to tackle constrained nonlinear 
optimization [7-8], however constraints were only applied on the input, with the states left unconstrained. 
    In this paper, an approach is suggested to design a suboptimal decentralized control structure for serially 
interconnected nonlinear dynamical systems with time delay and system constraints on the states and/or 
inputs. The main idea behind this approach is to consider time delayed coupling variables from proceeding 
subsystems as known inputs. Then, after introducing the coordinating variables, a decentralized algorithm is 
proposed to solve the problem at hand. This leads, at the end of convergence, to decentralized control 
strategy, which although suboptimal in its global sense, it guarantees the satisfaction of system constraints. 
Moreover, it allows parallel processing hence reduced computational time. The developed approach is then 
used to control the concentrations of the biochemical oxygen demand (BOD) and the dissolved oxygen (DO) 
in a three reach river system.  
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     The rest of the paper is divided into the following. The problem is formulated in section 2. The developed 
decentralized approach is presented in section 3. In section 4, the water quality control problem is 
demonstrated while simulation results are given in section 5. Finally, the paper is concluded in section 6.       

2. Problem Formulation  
   Let us consider the following nonlinear interconnected dynamical optimization problem with time delays, 
which comprises N-nonlinear interconnected subsystems, and is assumed to have a feasible solution: 
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     We assume in the rest of the paper that: 

( ) 0; {1,...., )d
p px t x t pτ τ θ− = ∀ − < ∈  

   Since we are dealing with the special class of serially interconnected nonlinear dynamical systems with 
time delay, in this case any subsystem is coupled only with the preceding one(s). In our analysis, we consider 
the interconnection with the preceding subsystems, ( )*

j px t τ−  ; {1,2,..., ( 1)}j i∈ − , as known input signals. 
Hence, the system will be decoupled and it is possible to control its behavior through a decentralized control 
structure. 
   Moreover, in order to satisfy state constraints without violating the dynamics of the system and to be able 
to generate a partially closed loop control strategy, we introduce the coordinating variables ( ) in

ix t Rο ∈  and 
( ) imo

iu t R∈ . Accordingly, the above optimization problem can be rewritten in the following equivalent form: 
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where ,ss rx u  are, respectively, the steady state response of the system and the reference input.  
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    As will be shown below, the coordinating variable ( )o
ix t will be obtained from a set of algebraic 

equations on which we can apply the inequality (9) to satisfy the state constraints. The Lagrange multiplier 
associated with (7) will force ( )ix t -resulting from the solution of the state equation (6)- to approach ( )o

ix t  
through the control signal. 

3. The Developed Approach 
   Let us write the Hamiltonian for the thi subsystem: 
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with the equality constraints (7) and (8) respectively. The necessary conditions of optimality lead to: 
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    However, to satisfy the constraints given by (10), we have [9]: 
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where 1 2i i iQ QΘ = +  

     As before, to satisfy system constraints given by (9), the coordinating vector ( )ox t , which minimizes the 
Hamiltonian, is given by: 
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This leads to the updating algorithm for ( )i tπ given by: 
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where k is the iteration number, ( )k
il t  can be specified according to the selected algorithm (conjugate 

gradient,..etc), while k
iϕ has to be positive to maximization of the dual function w.r.t. the dual variable ( )k

i tπ .  

    In our procedure, and throughout this paper, we applied the gradient technique to update ( )k
i tπ  with 
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   Substituting (13) into (15), and replacing ( )i tλ with the expression given in (23) while using (24) with (16), 
one gets, after simple mathematical manipulation: 
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     It can be seen that the first term of the RHS of (27) is the closed loop component of the decentralized 
controller whilst the second gives the open loop part which will be used to satisfy system constraints given 
by (9). The satisfaction of the input constraints given by (10), is equivalent to satisfying the following: 

( ) ( ) ( )iii t t tν ν ν≤ ≤                                                                                                                                      (28) 

where 1( ) ( )T
i i i iv t B tℜ ξ−= −                                                                                                                         (29) 

2( ) ( ) ( ) ( ) ( )T o
i i i i i i iit u B P t x t t R u t−1 −1 −1

ι ι ιν ℜ ℜ β ℜ= + + −                                                                    (30) 

2( ) ( ) ( ) ( ) ( )   T o
i i i i i ii it u B P t x t t R u t−1 −1 −1

ι ι ιν ℜ ℜ β ℜ= + + −                                                                              (31)  
This in turn gives: 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

ii i

ii i ii

i ii

v t if v t v t

v t v t if v t v t v t

v t if v t v t

<⎧
⎪

= ≤ ≤⎨
⎪ >⎩

                                                                                                     (32)  
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4. Water Quality Control 
     Water quality control in streams is usually achieved either through variable effluent flow rate with fixed 
BOD concentration or through fixed effluent flow rate with variable levels of BOD concentrations. In many 
practical applications, it may not be possible to get the desired water quality standards using any of the above 
two methods. Therefore, we may combine the two approaches to achieve our objective. This leads to the 
following nonlinear (bilinear) model for the ith reach  [10]:   
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where , zi and qi are, respectively, the concentration of BOD (mg/l) and DO (mg/l), k1i is the rate of decay of 
BOD, k2i is the re-aerations rate, k3i is the rate of loss of BOD due to settling, 4( / )i xk A dx  is the removal of 
DO due to bottom sludge requirement and qs is the concentration of DO at saturation level. EiQ , im are  
respectively,  the nominal flow rate and the nominal concentration of BOD in effluent to be discharged, 
while EiQΔ (t) and imΔ (t) are the deviations around these values. Qi and Qi-1 are the stream flow rates in 
reaches i and 1i −  respectively,  Vi is the water volume and θ is the number of delays. 
   Since the effluent flow rate to the river system is variable rather than constant, effluents from polluter 
stations have to be stored in tanks then discharged into the stream according to the derived control policy. 
This necessitates the introduction of a third state equation which describes the variation of the effluent 
volume in the storage tank with time: 

( ) ( / ) ( ( ) / )i i i Ei iEit F Q V Q t Vη = − − Δ                                                                                                            (37)                       
where ( ) /i Ti it V Vη =  , TiV  is the rate of change of the volume of the ith tank, Fi is the inflow rate of effluent 
into the tank, assumed constant, and ( ( )) /Ei iEiQ Q t V+ Δ is the outflow rate of effluent from the tank. 

Assuming that the inflow rate equals the nominal outflow rate of the effluent, i.e. Fi = / iEiQ V , we get: 
( ) ( ) /= −Δi Ei it Q t Vη                                                                                                                                 (38)  

Let ( )im tΔ = u1i(t) , ( ) /Ei iQ t VΔ = u2i(t), then by combining equations (35), (36) and (38), and to develop a 
completely decentralized control structure, we handle the interaction with the preceding reach as a known 
input signal. Therefore, the system can be described by the following state variable model for the ith reach: 
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τ
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    To satisfy both water quality standards and community needs, we have to insure that ( )i iz t z≤ and 
( )i iq t q≥ , otherwise most of the aquatic life in the river body will die. Moreover, the volume of the effluent 

in the tank must satisfy 0 i iη η≤ ≤ where iη is the maximum capacity of the tank. In addition, due to 
economical considerations imΔ  must not be less than a certain threshold imΔ ,otherwise the treatment cost of 
the effluent will increase drastically. Finally,  ( ) /Ei iQ t VΔ   must not exceed the maximum capacity of the 
valves used as actuators in the system and   must not be less than / iEiQ V− , which means zero discharge of 
effluent. These physical considerations add the following constraint equations to our model: 

i( )iix x t x≤ ≤                                                                                                                             (41)         

 ( ) iiiu u t u≤ ≤                                                                                                                               (42) 

with ,ix ix , iu , iu  being the lower and upper bounds of the state and control vectors (element by element), 
for the ith subsystem.  
Associated with each subsystem is a performance index Ji, to be minimized w.r.t. xi and ui, of the form: 
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5. Simulation 
The above water quality control problem is simulated using the following data: 
Subsystem (1): 

11 1 1 1

1 1

[10 7 0.01 5.937], [4.053 8 0.01], [5.35 10.9 0], [0 6 0.001], [10 0.049],

[ 0.14 0.1], [0 0.1].

T TTT d T
o
T T

x x d x x open

u u

= = = = =

= − − =
Subsystem (2): 

22 1 2 2[5.937 6 0.01], [5.937 6 0.01], [4.19 1.9 0], [0 5.6 0.001], [6.55 0.045]
T TTT d T

ox x d x x open= = = = =  

22 [ 0.35 0.1], [0 0.1]T Tu u= − − =  

Subsystem (3): 

3 3 3 3[5.707 4.5614 0.01], [5.707 4.5614 0.01], [2.19 1.9 0], [0 4.22 0.001],
T TT d T

ox x d x= = = =  

3 [6 0.016]
T

x open= ,   3 3[ 0.077 0.1], [0 0.1]T Tu u= − − =  
For the lack of space, Figs. 1,2 show, as an example, the concentration of BOD and DO in the second reach 
while Fig. 3 shows the volume of the effluent in the tank associated with this reach. The water treatment 
control action as well as the effluent discharge strategy are shown in Figs. 4,5 respectively. 

6. Conclusion 

    In this paper, we considered constrained optimization problems of nonlinear serially interconnected 
dynamical systems with time delays. For this problem, a partially closed loop decentralized control structure 
is proposed that yields a suboptimal performance of the system.  Simulation on a three reach river system 
shows the applicability and efficiency of the developed technique. It can be seen that the decentralized 
controller is capable of satisfying system constraints, as well as, achieving a satisfactory response of the 
system although globally suboptimal. 
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Fig. 1 BOD concentration in Subsystem (2) Fig. 2 DO concentration in Subsystem (2) 

Fig. 3 Tank Volume of Subsystem (2) 
 

 
Fig. 4 Variable Treatment Control of Subsystem (2) 

 
Fig. 5 Discharge Control of Subsystem (2) 

 
 
 
 
 
 
 
 

362


