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Abstract.  In this paper, we derive exact traveling wave solutions of mBBM equation and  2D-Burgers 
equation by a proposed Bernoulli sub-ODE  method. The method appears to be efficient in seeking exact 
solutions of nonlinear equations. 
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1. Introduction 
Recently searching for exact traveling wave solutions of nonlinear equations has gained more and more 

popularity, and many effective methods have been presented so far. Some of these approaches are the 
homogeneous balance method [1,2], the hyperbolic tangent expansion method [3,4], the trial function method 
[5], the tanh-method [6-8], the nonlinear transform method [9], the inverse scattering transform [10], the 
Backlund transform [11,12], the Hirotas bilinear method [13,14], the generalized Riccati equation [15,16], the 
theta function method [17-19], the sine-Ccosine method [20], the Jacobi elliptic function expansion [21,22], the 
complex hyperbolic function method [23-25], and so on. 

 In this paper, we propose a Bernoulli sub-ODE method to construct exact traveling wave solutionns for 
NLEES, and try to apply the method to obtain the traveling wave solutions for the mBBM equation and the 
2D-Burgers equation. 

2. Description of the  Bernoulli  Sub-ODE method  
In this section we present the solutions of the following ODE: 

2'G G Gλ μ+ = ,                                                                                                                                           (2.1) 

where 0, ( )G Gλ ξ≠ =  
When 0μ ≠ , Eq. (2.1) is the type of Bernoulli equation, and we can obtain the solution as 

1G
deλξμ

λ

=
+

,                                                                                                                                            (2.2) 

where d  is an arbitrary constant. 
Suppose that a nonlinear equation, say in two or three independent variables x, y and t , is given by 

,( , , , , , , , ......) 0t x y tt xt yt xx yyP u u u u u u u u u =                                                                                                 (2.3) 

where u = u(x, y, t) is an unknown function, P is a polynomial in u = u(x, y, t) and its various partial derivatives, 
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in which the highest order derivatives and nonlinear terms are involved. By using the solutions of Eq. (2.1), we 
can construct a serials of exact solutions of nonlinear equations:. 

Step 1.We suppose that 

( , , ) ( ), ( , , )u x y t u x y tξ ξ ξ= =                                                                                                                  (2.4)  
the traveling wave variable (2.4) permits us reducing Eq. (2.3) to an ODE for ( )u u ξ=  

( , ', '',......) 0P u u u =                                                                                                                                   (2.5) 
 

Step 2. Suppose that the solution of (2.5) can be expressed by a polynomial in G as follows: 
1

1( ) ......m m
m mu G Gξ α α −

−= + +                                                                                                (2.6) 

where ( )G G ξ=  satisfies Eq. (2.1), and 1, ...m mα α −  are constants to be determined later, 0mα ≠ . The 
positive integer m can be determined by considering the homogeneous balance between the highest order 
derivatives and nonlinear terms appearing in (2.5). 

Step 3. Substituting (2.6) into (2.5) and using (2.1), collecting all terms with the same order of G  together, 
the left-hand side of Eq. (2.5) is converted into another polynomial in G . Equating each coefficient of this 
polynomial to zero, yields a set of algebraic equations for 1, ,... ,m mα α λ μ− . 

Step 4.  Solving the algebraic equations system in Step 3, and by using the solutions of Eq. (2.1), we can 
construct the traveling wave solutions of the nonlinear evolution equation (2.5). 

In the subsequent sections we will illustrate the proposed method in detail by applying it to mBBM equation 
and the 2D-Burgers equation.  

3. Application Of Bernoulli  Sub-ODE Method For mBBM Equation  
In this section, we will consider the following mBBM equation: 

2 0t x x xxtu u u u u+ + + =                                                                                                                                  (3.1) 
In order to obtain the traveling wave solutions of Eq.(3.1), we suppose that 

( , ) ( ),u x t u x ctξ ξ= = −                                                                                                                                 (3.2) 
where c  is a constant that to be determined later. 

By using (3.2), (3.1) is converted into an ODE 
2(1 ) ' ' ''' 0c u u u cu− + − =                                                                                                                                 

(3.3) 
Integrating (3.3) once it follows: 

         
3

(1 ) ''
3
uc u cu g− + − =                                                                                                                                   

(3.4) 
where g  is the integration constant. 
Suppose that the solution of (3.4) can be expressed by a polynomial in G  as follows: 

0
( )

m
i

i
i

u a Gξ
=

=∑                                                                                                                                                   (3.5) 

where ia  are constants,  and G . satisfies Eq. (2.2). Balancing the order of  ''u  and 3u  in Eq. (3.3), we have    
2 3 1m m m+ = ⇒ = .  So                

0 1( )u a a Gξ = +                                                                                                                                                (3.6) 

where 1 0,a a  are constants to be determined later. 
Substituting (3.6) into (3.4) and collecting all the terms with the same power of G  together and equating 

each coefficient to zero, yields a set of simultaneous algebraic equations as follows: 
0 3

0 0 0
1: 0
3

G a ca g a− − + =                                               

1 2 2
1 0 1 1 1: 0G a a a ca caλ+ − − =  
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       2 2
1 0 1: 3 0G ca a aμλ + =  

3 2 3
1 1

1: 2 0
3

G ca aμ− + =       

Solving the algebraic equations above, yields: 
Case 1: 

1 02 2 2

3 3 22 , , , 0
2 2 2

a a c gμ λ
λ λ λ

= − = − − = − =
− − −

                                                                                     (3.7) 

 
Substituting (3.7) into (3.6), we have 
 

1 2 2

3 3( ) 2
2 2

u Gξ λ μ
λ λ

= − − + −
− −

, 
2

2
2

x tξ
λ

= +
−

                                                                                      (3.8) 

             
Combining with Eq. (2.2) and(3.8),  we can obtain the traveling wave solutions of (3.1) as follows: 

 
  

2
1 22 2 ( )

2

3 3 1( , ) 2
2 2 x t

u x t
de

λ
λ

λ μ
λ λ μ

λ
+

−

= − − + −
− −

+

                                                                                        (3.9)  

where d  is an arbitrary constant. 
Case 2: 

1 02 2 2

3 3 22 , , , 0
2 2 2

a a c gμ λ
λ λ λ

= − − = − = − =
− − −

                                                                     (3.10) 

 
Substituting (3.7) into (3.6), we have 
 

2 2 2

3 3( ) 2
2 2

u Gξ λ μ
λ λ

= − − −
− −

, 
2

2
2

x tξ
λ

= +
−

                                                                                    (3.11) 

             
Combining with Eq. (2.2) and(3.8),  we can obtain the traveling wave solutions of (3.1) as follows: 

  
2

2 22 2 ( )
2

3 3 1( , ) 2 ( )
2 2 x t

u x t
de

λ
λ

λ μ
λ λ μ

λ
+

−

= − − −
− −

+

                                                                                    (3.12)  

where d  is an arbitrary constant. 
Remark : Our results (3.9) and (3.12) are new  exact traveling wave solutions for Eq. (3.1). 

4. Application Of Bernoulli  Sub-ODE Method For 2d Burgers Equation   
In this section, we will consider the following 2D Burgers equation: 

2 2 0t x xx yy yu uu u u vu− − − − =                                                                                                                 (4.1) 

2 2 0t x xx yy yv uv v v vv− − − − =                                                                                                                   (4.2) 
In order to obtain the traveling wave solutions of Eq.(4.1), we suppose that 

( , ) ( ),u x t u kx y stξ ξ ω= = + +                                                                                                             (4.3) 
 

where , ,k sω  are constants that to be determined later. 
By using (4.3), (4.1) and (4.2) is converted into ODEs 

2 2' 2 ' ( ) '' 2 ' 0su kuu k u vuω ω− − + − =                                                                                                      (4.4) 
2 2' 2 ' ( ) '' 2 ' 0sv kuv k v vvω ω− − + − =                                                                                                        

(4.5) 
Suppose that the solution of (4.4) and (4.5) can be expressed by a polynomial in G  as follows: 

0
( )

m
i

i
i

u a Gξ
=

=∑                                                                                                                                                    (4.6) 
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0
( )

n
i

i
i

v b Gξ
=

=∑                                                                                                                                                    (4.7) 

 
where ,i ia b  are constants, G . satisfies Eq. (2.2). Balancing the order of  'uu  and 'vu  in Eq. (4.6),  the order of  

'uv  and ''v  in Eq. (4.7), we have    2 1 1, 1 2 1m m n m n n m n+ = + + + + = + ⇒ = = .  So                

0 1( )u a a Gξ = +                                                                                                                                                  (4.8) 

0 1( )v b b Gξ = +                                                                                                                                                   (4.9) 
where 1 0 1 0, , ,a a b b  are constants to be determined later. 

Substituting (4.8), (4.9) into (4.4) , (4.5), and collecting all the terms with the same power of G  together 
and equating each coefficient to zero, yields a set of simultaneous algebraic equations as follows: 

For Eq. (4.4):                                            
1 2 2 2 2

1 1 1 0 1 0 1: 2 2 0G sa a ka a a b a kμ ω μ μ ω μ μ− − − − =  
      2 2 2

1 0 1 1 1 1 0: 2 3 2 2G ka a sa a k ka a bλ λ μλ μ ω λ− + − + 2
1 1 13 2 0a a bω μλ ω μ+ − =  

3 2 2 2 2 2
1 1 1 1 1: 2 2 2 2 0G a a k a k a bω λ λ λ ω λ− − + + =     

For Eq. (4.5):                                              
1 2 2 2

1 1 1 0 1 0: ( ) 2 2 0G sb b k kb a b bμ ω μ μ ω μ− + − − =  
       2 2 2

1 0 1 1 1 1: 2 3 ( ) 2G kb a sb b k kb aλ λ ω μλ μ− + + − 2
1 0 12 2 0b b bω λ ω μ+ − =  

3 2 2 2 2
1 1 1 1: 2 ( ) 2 2 0G b k kb a bω λ λ ω λ− + + + =    

 
Solving the algebraic equations above, yields: 

2 2
1

1 0 0 0 0 1 1, , ,k ba a a b b b b
k

ω λ λ ω+ −= = = = , 2 2
0 0, , 2 2k k s ka b kω ω ω μ ω μ= = = + + +                                     (4.10) 

Substituting (4.10) into (4.8) and (4.9), we have 
2 2

1
0( ) k bu a G

k
ω λ λ ωξ + −= +                                                                                                                           (4.11) 

 
0 1( )v b b Gξ = +                                                                                                                                                  (4.12) 

       
where  

0 0 1, , , ,k a b bω   are arbitrary constants, and 
1, , 0k bω ≠ , 2 2

0 0( 2 2 )kx y ka b k tξ ω ω μ ω μ= + + + + + . Combining 
with Eq. (2.2),  we can obtain the traveling wave solutions of (4.1)  and (4.2) as follows: 

              
2 2

1
0

1( , , ) ( )k bu x y t a
k deλξ

ω λ λ ω
μ
λ

+ −= +
+

                                                                                                           (4.13) 

0 1
1( , , ) ( )v x y t b b
deλξμ

λ

= +
+

                                                                                                                             (4.14) 

where 2 2
0 0( 2 2 )kx y ka b k tξ ω ω μ ω μ= + + + + +  

Remark: Our result (4.13) and (4.14)  are new exact traveling wave solutions for Eqs. (3.1)-(3.2). 

5. Conclusions 
We have seen that some new traveling wave solution of mBBM equation is successfully found by using the 

Bernoulli sub-ODE method. One can see the method is concise and effective. Also this method can be used to 
many other nonlinear problems. 
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