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Abstract.  In this paper, we derive exact traveling wave solutions of  Kaup-Kupershmidt equation by a 
proposed Bernoulli sub-ODE  method. The method appears to be efficient in seeking exact solutions of 
nonlinear equations. We also make a comparison between the present method and the known (G’/G) expansion 
method. 
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1. Introduction 
Research on nonlinear equations is a hot topic. The powerful and efficient methods to find analytic solutions 

and numerical solutions of nonlinear equations have drawn a lot of interest by a diverse group of scientists. 
Many efficient methods have been presented so far.  During the past four decades or so searching for explicit 
solutions of nonlinear evolution equations by using various different methods have been the main goal for many 
researchers, and many powerful methods for constructing exact solutions of nonlinear evolution equations have 
been established and developed such as the homogeneous balance method, the hyperbolic tangent expansion 
method, the trial function method, the tanh method, the nonlinear transform method, the inverse scattering 
transform, the Backlund transform, the Hirotas bilinear method, the generalized Riccati equation, the theta 
function method, the sine-Ccosine method, the Jacobi elliptic function expansion, the complex hyperbolic 
function method [1-25], and so on.   In this paper, we proposed a Bernoulli sub-ODE method to construct exact 
traveling wave solution-ns for NLEES. 

The rest of the paper is organized as follows. In Section 2, we describe the Bernoulli sub-ODE method for 
finding traveling wave solutions of nonlinear evolution equations, and give the main steps of the method. In the 
subsequent sections, we will apply the Bernoulli Sub-ODE method and the known (G’/G) expansion method to 
find exact traveling wave solutions of the Kaup-Kupershmidt equation. In the last Section, some conclusions are 
presented. 

2. Description of the  Bernoulli  Sub-ODE method  
In this section we present the solutions of the following ODE: 

2'G G Gλ μ+ = ,                                                                                                                                           (2.1) 

where 0, ( )G Gλ ξ≠ =  
When 0μ ≠ , Eq. (2.1) is the type of Bernoulli equation, and we can obtain the solution as 
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deλξμ
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+

,                                                                                                                                            (2.2) 

where d  is an arbitrary constant. 
Suppose that a nonlinear equation, say in two or three independent variables x, y and t , is given by 

,( , , , , , , , ......) 0t x y tt xt yt xx yyP u u u u u u u u u =                                                                                                 (2.3) 

where u = u(x, y, t) is an unknown function, P is a polynomial in u = u(x, y, t) and its various partial derivatives, 
in which the highest order derivatives and nonlinear terms are involved. By using the solutions of Eq. (2.1), we 
can construct a serials of exact solutions of nonlinear equations:. 

Step 1.We suppose that 
( , , ) ( ), ( , , )u x y t u x y tξ ξ ξ= =                                                                                                                  (2.4)  

 
the traveling wave variable (2.4) permits us reducing Eq. (2.3) to an ODE for ( )u u ξ=  

( , ', '',......) 0P u u u =                                                                                                                                   (2.5) 

Step 2. Suppose that the solution of (2.5) can be expressed by a polynomial in G as follows: 
1

1( ) ......m m
m mu G Gξ α α −

−= + +                                                                                                (2.6) 
 

where ( )G G ξ=  satisfies Eq. (2.1), and 1, ...m mα α −  are constants to be determined later, 0mα ≠ . The 
positive integer m can be determined by considering the homogeneous balance between the highest order 
derivatives and nonlinear terms appearing in (2.5). 

Step 3. Substituting (2.6) into (2.5) and using (2.1), collecting all terms with the same order of G  together, 
the left-hand side of Eq. (2.5) is converted into another polynomial in G . Equating each coefficient of this 
polynomial to zero, yields a set of algebraic equations for 1, ,... ,m mα α λ μ− . 

Step 4.  Solving the algebraic equations system in Step 3, and by using the solutions of Eq. (2.1), we can 
construct the traveling wave solutions of the nonlinear evolution equation (2.5). 

In the subsequent sections we will illustrate the propo-sed method in detail by applying it to 
Kaup-Kupershmidt equation.  

3. Application Of the Bernoulli  Sub-ODE Method For Kaup-Kupershmidt 
Equation  
In this section, we will consider the following Kaup-Kupershmidt equation: 

2 7545 15 0
2xxxxx t x xx x xxxu u u u u u uu+ + − − =                                                                                           (3.1) 

Suppose that   

( , , ) ( ),u x y t u kx tξ ξ ω= = +                                                                                                               (3.2) 
 

where  ,k ω  are constants that to be determined later. 
By (3.2), (3.1) is converted into an ODE 
5 (5) 2 3 375' 45 ' ' '' 15 ''' 0

2
k u u ku u k u u k uuω+ + − − =                                                                                      (3.3) 

Integrating (3.3) once we obtain 
5 (4) 3 3 2 34515 ' 15 ''

4
k u u ku k u k uu gω+ + − − =                                                                                                 (3.4) 

where g  is the integration constant. 
Suppose that the solution of (3.4) can be expressed by a polynomial in G  as follows: 

0
( )

m
i

i
i

u a Gξ
=

=∑                                                                                                                                                  (3.5) 
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where ia  are constants, and ( )G G ξ=  satisfies Eq. (2.1). 
Balancing the order of 3u  and (4)u  in Eq.(3.4), we have 3 2 4 2m m m+ = + ⇒ = .So Eq.(3.5) can be 

rewritten as 
2

2 1 0 2( ) , 0u a G a G a aξ = + + ≠                                                                                                                   (3.6) 
 

where 2 1 0, ,a a a  are constants to be determined later. 
Substituting (3.6) into (3.4) and collecting all the terms with the same power of G  together, equating each 

coefficient to zero, yields a set of simultaneous algebraic equations as follows: 
0 3

0 0: 15 0G g a kaω− + + =                                          
1 3 2 5 4 2

1 0 1 1 0 1: 15 45 0G a k a a k a ka aλ ω λ− + + + =  

2 2 3 2 2 3
0 2 0 2 0 1 0 1: 45 60 45 45G ka a k a a ka a a a kλ μλ− + + 3 2 2 5 4 5 3

1 2 2 1
105 15 15 0

4
k a a k a a kλ λ ω μ λ− + + − =  

3 3 2 3 2 3 5
0 1 2 1 0 1 2

135: 90 30 130
2

G ka a a k a k a a a kλμ μ μλ+ − − 3 5 2 2 2 3
1 1 1 2 0 215 50 120 150 0ka k a a a k a aμ λ λ λμ+ + − + =  

4 3 2 5 3 3 2
1 2 1 2 1 0 2: 285 45 60 90G k a a ka a k a a a kμλ μ λ μ+ − − 3 2 2 5 2 2 2 3 2 2

2 2 0 2 1
165105 330 45 0

4
k a k a ka a k aλ μ λ μ− + + − =  

5 3 2 5 4 5 3
2 1 2: 240 24 336G k a k a k aμλ μ μ λ+ − 2 3 2

0 2 1 245 165 0ka a k a a μ+ − =  
6 5 4 3 3 2 2

2 2 2:120 15 135 0G k a ka k aμ μ+ − =  
Solving the algebraic equations above, yields: 

Case 1: 
2 2 2 2 2

2 1 0
1, , ,

12
a k a k a kμ μλ λ= = − =  5 4 7 61 1, ,

16 288
k k k g kω λ λ= = − =                                                              (3.7) 

 
where 0k ≠  is an arbitrary constant. 

Substituting (3.7) into (3.6),  we obtain 
 

2 2 2 2 2 2
1

1( )
12

u k G k G kξ μ μλ λ= − + , 5 41
16

kx k tξ λ= −                                                                           (3.8) 

 
Combining with Eq. (2.2), we can obtain the traveling wave solutions of (3.1) as follows: 

5 4

2 2 2
1 1( )

16

1( , ) [ ]
kx k t

u x t k
de

λ λ
μ

μ
λ

−
=

+
5 4

2 2 2
1( )

16

1 1[ ]
12kx k t

k k
de

λ λ
μλ λ

μ
λ

−
− +

+
                                        (3.9) 

    Case 2: 
2 2 2 2 2

2 1 0
28 , 8 , ,
3

a k a k a kμ μλ λ= = − =  5 4 7 629, 11 ,
9

k k k g kω λ λ= = − = −                                                           (3.10) 

where 0k ≠  is an arbitrary constant. 
Substituting (3.7) into (3.6),  we obtain 

 
2 2 2 2 2 2

2
2( ) 8 8
3

u k G k G kξ μ μλ λ= − + , 5 411kx k tξ λ= −                                                                       (3.11) 

 
Combining with Eq. (2.2), we can obtain the traveling wave solutions of (3.1) as follows: 

5 4

2 2 2
2

( 11 )

1( , ) [ ]
kx k t

u x t k
deλ λ

μ μ
λ

−
=

+
5 4

2 2 2

( 11 )

1 1[ ]
12kx k t

k k
deλ λ

μλ λμ
λ

−
− +

+
                                       (3.12) 

4. Application Of  (G’/G) expansion Method For Kaup-Kupershmidt Equation  
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In this section, we apply the (G’/G) expansion method to obtain the traveling wave solutions of 
Kaup-Kupershmidt equation (3.1). 

Suppose that the solution of (3.4) can be expressed by a polynomial in G  as follows: 

2
2 1 0 2

' '( ) ( ) , 0G Gu a a a a
G G

ξ = + + ≠                                                                                              (4.1) 

where ia  are constants, and ( )G G ξ=  satisfies  

       '' ' 0G G Gλ μ+ + =                                                                                                                           (4.2) 
Substituting (4.2) into (3.4) and collecting all the terms with the same power of G  together, equating each 

coefficient to zero, yields a set of simultaneous algebraic equations. Solving these equations we obtain 

2 2 2 2
2 1 0

28 , 8 , ( 8 ),
3

a k a k a kλ λ μ= = = + 5 2 2 4, 11 ( 8 16 ),k k kω λ μ μ λ= = − − + +                                                           

7 3 7 4 7 2 21664 104 416
9 3 3

g k k kμ μλ μ λ= + −                                                                                                             (4.3) 

 
where 0k ≠  is an arbitrary constant. 

Substituting (4.3) into (4.2),  we obtain 
 

2 2 2 2 2' ' 2( ) 8 ( ) 8 ( 8 )
3

G Gu k k k
G G

ξ λ λ μ= + + + , 5 2 2 411 ( 8 16 )kx k tξ λ μ μ λ= − − + +                                              (4.4) 

 
Combining (4.2) and (4.4) we obtain the following solutions. 
When 2 4 0λ μ− >  

2 2 2 2 2 2
1

2( ) ( 8 ) 2 2 ( 4 )
3

u k k kξ λ μ λ λ μ= + − + −
2 2

1 2
2

2 2
1 2

1 1sinh 4 cosh 4
2 2( )1 1cosh 4 sinh 4
2 2

C C

C C

λ μξ λ μξ

λ μξ λ μξ

− + −

− + −
  

When 2 4 0λ μ− <  

2 2 2 2 2 2
2

2( ) ( 8 ) 2 2 (4 )
3

u k k kξ λ μ λ μ λ= + − + −
2 2

1 2
2

2 2
1 2

1 1sin 4 cos 4
2 2( )1 1cos 4 sin 4
2 2

C C

C C

μ λ ξ μ λ ξ

μ λ ξ μ λ ξ

− − + −

− + −
 

 
When 2 4 0λ μ− =  

2 2
2 2 2 2 2

3 2
1 2

82( ) ( 8 ) 2
3 ( )

k Cu k k
C C

ξ λ μ λ
ξ

= + − +
+

   

 
Remark: As one can see from Section III and Section IV, the traveling wave solutions obtained by the 
Bernoulli Sub-ODE method are different from those by the known (G’/G) expansion method. 

5. Conclusions 
We have seen that some new traveling wave solutions of Kaup-Kupershmidt equation are successfully 

found by using the Bernoulli sub-ODE method. The main points of the method are that assuming the solution of 
the ODE reduced by using the traveling wave variable as well as integrating can be expressed by an m -th 
degree polynomial in G , where ( )G G ξ=  is the general solutions of a Bernoulli sub-ODE equation. The 
positive integer m  can be determined by the general homogeneous balance method, and the coefficients of the 
polynomial can be obtained by solving a set of simultaneous algebraic equations. Also we make a comparison 
between the proposed method and the known (G’/G) expansion method. The Bernoulli Sub-ODE method 
method can be applied to many other nonlinear problems. 
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