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Abstract.Inversiontransduction grammar (ITG) [1]is an effective constrainttoword alignment search space. 
However, the traditional unsupervised ITG word alignment model is incapable of utilizing rich features. In 
this paper, we propose a novel feature-based unsupervised ITG word alignment model. With the help of rich 
features and ܮଵ regularization, a compact grammar is learned. Experiments on both word alignment and end-
to-end statistical machine translation (SMT) task show that our model achieves better performance than the 
traditional ITG model with the AER of word alignment improved by 3 points and the BLEU score of SMT 
improved by 0.8 points. 
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1. Introduction  
The goal of machine translation is to translate a text given in some source language into a target 

language. We are given a source string ଵ݂
௃    ൌ  ଵ݂ ڮ ௝݂ ڮ ௃݂ of length J, which is to be translated into a target 

string ݁ଵ
ூ    ൌ  ݁ଵ ڮ ݁௜ ڮ ݁ூ of lengthI.  Statistical machine translation can be formulated as follows: 

כ݁    ൌ ௘ݔܽ݉݃ݎܽ ܲሺ݁|݂ሻ ൌ ௘ݔܽ݉݃ݎܽ  ܲሺ݂|݁ሻܲሺ݁ሻ                                                   (1) 
 

where e is the target sentence, and f is the source sentence.  ܲሺ݁ሻisthe target language model and ܲሺ݂|݁ሻ 
is the translation model. 

Word alignment is a crucial step in the training of most statistical machine translation (SMT) systems. It 
is the task of inference word correspondences between bilingual sentence pairs. Fig.1 shows an example of 
word alignment between a Chinese sentence and an English sentence. The Chinese and English words are 
listed horizontally and vertically, respectively.We use the shading boxes to indicate the correspondences 
between the words in the two languages. The “China” is aligned to “zhongguo”; “development” is aligned to 
“fazhan”; “economy” is aligned to “jingji”;  “‘s ”is aligned to “de”. 

The advantage of discriminative models is that they can use rich features, whereas, the advantage of 
generative models is that they do not need manual aligned data. In this paper, we combine the advantages of 
these two learning paradigms and propose a feature-based unsupervised word alignment model, which can 
use rich features, but without relying on manual aligned data. We use the inversion transduction grammars 
(ITG) [1] as the alignment search space constraint. ITG has been widely used for word alignment. Especially 
the supervised ITG models [7, 8, 9], one reason for their good performance is that they can incorporate rich 
features, which are knowledge source and the key to achieve better performance. However, all these models 
are supervised learning-based, and thus need the manual aligned training data, which are only available for 
limited language pairs and expensive to create. Moreover, as pointed by [10] manual alignments impose a 
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commitment to a particular preprocessing regime. Unsupervised ITG models [11, 12], have also been 
extensively studied, but they are incapable of utilizing features.To the best of our knowledge, our model is 
the firstfeature-based unsupervised ITG word alignment model.Moreover, in order to handle high-
dimensional feature space, 1ܮregularization is used in the objective function, which leads a compact model to 
be learned.This is an alternativeapproach to achieve a sparse solution compared with the previous work 
which usually usesa sparse prior in Bayesian formulation [12, 13]. 

The rest of this paper is organized as follows. Section 2 describes the traditional ITG model and our new 
feature-based ITG model. Section 3 describes the learningalgorithm of our model. Section 4 describes the 
features which are used in our model. Section 5presents some experimental results and related results 
analysis. Section 6 reviews some related works and presents our concluding remarks and future works. 

2. Models 

2.1. Inversion Transduction Grammars 
ITG [1] is a well-studied synchronous grammar formalism in which the source and target sentence are 

generated simultaneously. The right hand side of the ITG rules is either two non-terminals or a terminal 
sequence. In our work, we adopt the left heavy grammar [1]: 
S →  A | B | C 
A → [A B] | [B B] | [C B] | [A C] | [B C] | [C C] 
B →<A A> | <B A> | <C A> | <A C> | <B C> | <C C> 
C → e/f | Ԗ/f | e/Ԗ 

 
Rules with non-terminals inside square brackets and angled brackets are called straight rules and inverted 

rules, respectively. The straight rules expand the left hand side into two symbols in the same order in the two 
languages. The inverted rules expand the left hand side into two symbols in inverted order in the two 
languages.  Fig.2 shows an example of word alignment and ITG parse tree for a bilingual sentence. The 
“S”,”A”,”C” in the tree are the non-terminals of the grammar. 

2.2. Feature-Based ITG 
Inspired by [14], we change the parameter form of the traditional ITG and model the probability of 

terminal rules in a log-linear form: 

                                                           ܲ൫ݎ௖หߣ ሬሬറ൯ ൌ  ௘௫௣ழ ఒሬሬሬറ ,௙റሺ௥೎ሻவ
∑ ௘௫௣ழ ఒሬሬሬറ,   ௙റሺ௥೎ᇲሻவೝ೎ᇲאೃ೎

                                                            (2) 

 
Whereݎ௖ is the terminal rule, ܴ௖is the whole terminal rules of the grammar, റ݂ሺݎ௖ሻis the feature vector of ݎ௖, 

 .ሬሬሬሬറis the weight vector, and <> represents the inner product ߣ 
For non-terminal rules, their original forms are kept unchanged. The feature-based ITG model is 

abbreviated as F-ITG in the following sections. Because a log-linear sub-model is adopted, there are two 
advantages of the F-ITG model. First, rich features can be incorporated into the rules.Second, feature 
selection technology can be used to learn a compact grammar. 

We use the maximum likelihood estimation method to train the F-ITG model. The objective function of 
the model is the log-likelihood of the training data along with the 1ܮ regularization term. 

ሬሬറ൯ ߣ൫ܮ ൌ ݃݋݈ ܲ൫ߕหߣ ሬሬറ൯ െ ݇ฮߣ ሬሬറฮଵ                                                        (3) 
 

whereߕ denotes the bilingual corpus and݇ is the 1ܮ coefficient. The 1ܮ regularization is used to control the 
model complexity and acts as a feature selection mechanism [15]. 

3. Parameter Estimation 
One advantage of the F-ITG model is that EM-style algorithm can still be used to estimate the model 

parameters.In the E-step, the inside-outside algorithm is used to collect the expected counts of rules 
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according to the current rule's probabilities. This step remains unchanged from traditional ITG model. Given 
the rule's expected counts, the M-step tunesparametersto maximize the regularized expected complete log 
likelihood1. 

݈൫ߣ ሬሬറ, റ݁௥೎൯ ൌ  ∑ ݁௥೎௥೎אோ೎ ݃݋݈ ܲ൫ݎ௖หߣ ሬሬറ൯ െ ݇ฮߣ ሬሬറฮଵ                                   (4) 
 

where݁௥೎istheexpected count of terminal rule calculated in the E-step. 
Theobjective function in (4) is not everywhere differentiable due to the 1ܮ regularization.So we adopt the 

Orthant-Wise Limited-memory Quasi-Newton (OWL-QN) algorithm [16] to optimize it2. The OWL-
QNalgorithmneeds to know the gradient of the first term in the objective function, which can be computed as: 

ఒሬሬറ݈ߘ ൌ  ∑ ݁௥೎ כ ∆ሬሬറ௥೎אோ೎                                                          (5) 
where∆ሬሬറൌ  റ݂ሺݎ௖ሻ െ ∑ ܲ൫ݎ௖

ᇱหߣ ሬሬറ൯௥೎ᇲאோ೎
റ݂ሺݎ௖

ᇱሻ 
 

The IBM model 1 is trained on the bilingual corpus and the translation probabilities are used to initialize 
the terminal rule's probabilities. The fixed-link pruning [17] methodis used in our system to speed up the 
training. The pseudo code of the overall training procedure is given in Algorithm 1.In the E-step (line 3), the 
expected countseሬറ୰౤for non-terminal rules and eሬറ௥೎for terminal rules are calculated. In the M-step, the non-
terminal rule probabilities are estimated by normalizing expected counts (line 4-6), the OWL-QN is used to 
tune λ ሬሬሬറ for terminal rules (line 7-11). 

 

Algorithm 1 Learning Algorithm for F-ITG 

Input: Bilingual sentence pairs 
Output: Probabilistic ITG 
1 Initialize rule probabilities 
2 Repeat 
3  Compute  റ݁௥೙ , റ݁௥೎ 
4  for ݎ௡ א ܴ௡do 
5  P(ݎ௡) ן ݁௥೙ 
6  end for 
7  repeat 

8        Compute ݈൫ߣ ሬሬറ, റ݁௥೎൯ 
9        Compute ߘఒሬሬറ݈ 

ሬሬሬሬറ ߣ   10  ՚ , ሬሬറ ߣሺܤܯܫܮܥ ݈,  ሻ݈ߘ
11  until convergence 

12  Compute ܲ൫ݎ௖หߣ ሬሬറ൯ 
13 until convergence 

4. Features 
In this section, we describe the detailed features used in our model. 

4.1. Basic Feature 
To capture the co-occurrence of bilingual terminals, the basic feature is designed for each terminal rule. 

݂௕:ሺ௘̂,௙መሻሺ݁, ݂ሻ ൌ ൜1, ݂݅ e ൌ eො and ݂ ൌ መ݂
0, ݁ݏ݅ݓݎ݄݁ݐ݋

 

where ݁̂ and መ݂are some specified source and target word, respectively. Note that if we only use the basic 
features and set weightsproperly (proportional to the logarithm of normalized relative frequency), thefeature-
based ITG model is degenerated to traditional ITG model. 
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4.2. Dictionary Feature 
Dictionaries are good resources for word alignment.In our experiments, the LDC Chinese-English 

Translation Lexicon (LDC2002L27) is used for defining the dictionary feature. 

ௗ݂ሺ݁, ݂ሻ ൌ ൜1, ,ሺ݁ ݕݎݐ݊݁ ݂݅ ݂ሻ is in dictionary
0, ݁ݏ݅ݓݎ݄݁ݐ݋  

4.3. Part-of-Speech Feature 
Part-of-speech(POS)can provide some useful information for alignment. For example, noun word in one 

languageis often aligned to noun word in another language.Since the POS tag sets of English and Chinese are 
different, we have to map between the two sets.We first use the StanfordPOS tagger to tag both the Chinese 
side and the English side of whole corpus. Then, the GIZA++ [18] is adopted to train an intersection 
wordalignment on the training corpus3. Finally, the POS feature is defined as: 

௣݂ሺ݁, ݂ሻ ൌ ൜1, ݂݅  ௪ܲሺ݁|݂ሻ כ  ௪ܲሺ݂|݁ሻ ൐ ଶߜ

0, ݁ݏ݅ݓݎ݄݁ݐ݋
 

where ௪ܲሺ݁|݂ሻ and  ௪ܲሺ݂|݁ሻ are conditional probabilities between POStags, and the thresholdߜଶis set to 0.5 
in experiments. 

5. Experiments 
In this section, the effectiveness of the proposed model is verified on the word alignment task and the 

end-to-end machine translation task. 

5.1. Word Alignment Evaluation 
As in previous work [7], the Chinese-English hand-aligned portion of the 2002 NIST MT evaluation set 

(WAAC for short) is adopted for evaluating word alignment performance. The Alignment Error Rate (AER) 
[19], precision and recall are reported. The definitions of them are as follows. 

AER=1-  (|A∩P|+|A∩S|)/(|A|+|S| ) 
Precision=  |A∩P|/|A| 

Recall=  |A∩S|/|S| 
 

where A is word alignments generated by systems, P and S are word alignments marked as “possible” 
and “sure” in the golden standard, respectively. Note that the lower of AER, the better of the model. 

Our model is trained on WAAC (without word alignments) and FBIS (LDC2003E14) datasets. For FBIS 
corpus, sentence pairs with source/target length ratio more than 3 or less than 1/3 are removed out to reduce 
errors of wrongly aligned sentence pairs. To test the performance of different data size, we build a small 
dataset with length limit 15 and a large dataset with length limit 35 for both WAAC and FBIS corpora. Table 
1 gives some statistics. 

Table. 1:Corpus statistics 

Dataset Source Sent Word[C/E] Type[C/E]

small WAAC 97 906/1,064 564/577 
FBIS 23K 214K/259K 16K/13K 

large WAAC 350 6.4K/7.5K 2K/2K 
FBIS 123K 2.2M/2.8M 40K/34K 

 
The performances of F-ITG and the baseline of traditional ITG are compared. We also report the 

alignments generated by GIZA++ for reference. For GIZA++, the default setting up to model 4 is used, and 
the “grow-diag-final-and” heuristic is used to obtain symmetric alignments. Table 2 shows the evaluation 
results. The proposed F-ITG model outperforms the traditional ITG significantly on both datasets for all 
three metrics. This is reasonable since additional resources could be easily incorporated as features and 
contribute to the overall performance. Compared to GIZA++, we observe that GIZA++ achievesbetter recall 
than F-ITG on both datasets. The reason should be that the “grow-diag-final-and” heuristicadds links that 
exist in theunion of the bi-directional alignments.While in F-ITG and ITG,theempty links are explicitly 
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modeled by theԖtoken,so the learned alignments often have more empty-linked words, resulting in low-recall 
but higher precision. 

Table. 2:Word alignment result on small/large datasets 

Dataset Model Precision Recall AER 

Small 
ITG 78.5 73.6 23.8 

F-ITG 85.4 74.5 20.4 
GIZA++ 59.9 74.9 33.7 

Large 
ITG 74.3 72.8 26.4 

F-ITG 78.1 74.2 23.9 
GIZA++ 71.1 80.2 24.9 

 

Table.3:Grammar statistics 

Model Total Rules Active Ratio 
ITG 8,614,343 606,304 7.04% 

F-ITG 8,614,343 82,959 0.96% 
 
As mentioned in Section 2, the 1ܮ regularization can act as a feature selection mechanism. Most feature 

weights (more than 98%) in our model are optimized to zero, which leads to a compact grammar. The rule's 
distribution of the F-ITG is more non-uniform than the ITG's. To compare the two grammars, the rule with 
probability larger than 1.0 כ 10ିଵ଴is defined as active rule. The size of active rules of F-ITG is far less than 
the traditional ITG as showed in Table 3. Fig. 3 gives a snip of our grammar. The left column is the 
probability of the rule. The right column is the rule itself. Note that, we use the index of the word to 
represent the word itself in the rule. 

 
economy     

‘s     

China     

of     

development     

the     

 

zhongguo

de 

jingji 

fazhan 

Fig. 1: Word Alignment Matrices 

 

progress    

technological    

promote    

 

cu jin

jishu 

jinbu
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Fig. 2:Word Alignment Matrices and ITG Parse Tree 

 

 
0.968316          S ՜ A 

 0.0297967        S ՜ B 

 0.001887          S ՜ C 

 0.0920312         A ՜[ A B ] 

 0.00692773        A ՜[ B B ] 

 0.0357791        A ՜[ C B ] 

 0.617971          A ՜[ A C ] 

 0.0568261         A ՜[ B C ] 

 0.190465          A ՜[ C C ] 

 0.14864    B ՜<A A > 

 0.102818          B ՜< B A > 

 0.172223          B ՜< C A > 

 0.133342          B ՜< A C > 

 0.133605         B ՜< B C > 

 0.309371         B ՜< C C > 

 1e-10       C ՜1  | 1863  

 1e-10       C ՜1  | 551  

 1e-10       C ՜1  | 172  

 1e-10       C ՜1  | 847  

 1.31398e-05        C ՜1  | 295  

 1e-10       C ՜1  | 3579  

 1e-10       C ՜1668  | 1  

 4.58867e-05        C ՜1668  | 1863 

Fig. 3:A snip of our learned grammar 

 

5.2. SMT Experiments 
We also carry out SMT experiments to check if our better word alignment leads to better SMT 

performance. The large dataset described above is used as training corpus. The NIST 2003 and NIST 2005 
Chinese-to-English MT evaluation test sets are used as development set and test set, respectively. A 5-gram 
language model is trained on the Xinhua portion of the English Gigaword corpus (LDC2003T05) by the 
SRILM toolkit [20].Moses [21] is used as our decoder. The MERT [22] tuning procedure is run 10 times. 
The average BLEU [23] scores are reported. Table 4 presents the SMT results based on F-ITG, traditional 
ITG, and GIZA++. The F-ITG model obtains more than 0.8BLEU improvementsover the baseline and a 
slightly better BLEU score than GIZA++. 

Table.4:SMT Experiments Result 

Model Dev Test 
ITG 27.06 26.42 

F-ITG 27.76 27.24 
GIZA++ 26.68 27.12 

 

6. Related Work and Conclusion 
The approach of using features in the unsupervised model is useful [10, 24, 25]. Our work is similar to 

[14], But they do not study the alignment space under the ITG constraints and do not explore the usage ofLଵ 

35



regularization for sparsity.  In order to learn a compact and simple solution, previous works usually usea 
sparse prior in Bayesian formulation [12, 13, 26, 27]. We use an alternative approach. Therule's probability is 
parameterized in a log-linear form anda Lଵ regularization is used to achieve the same goal. A compact 
grammar is benefit to word alignment, which is also verified by [28]. They search for good alignment that 
minimized the size of the induced bilingual dictionary. 

In this paper, a simple but effective feature-based unsupervised word alignment model under the ITG 
constraints is presented. With the help of the rich features and the Lଵ regularization, a compact grammar is 
learned. Experiments on both word alignment and SMT show that, the F-ITG model can achieve significant 
improvementthan the traditional ITG model. In future, we will continue working on this line of research. In 
this work, there are three features are used in the model. We will design more features into the rules to 
achieve further improvement. The non-terminal rules stay unchanged in current model. We will incorporate 
features into the non-terminal rules. 
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