
An Efficient Leader Election Algorithm of Performance-Related
Characteristics for Dynamic Networks

Che-Cheng Chang a and Jichiang Tsai b +

Department of Electrical Engineering National Chung-Hsing University Taichung, Taiwan

Abstract. The core of a smart grid is characterized by two-way flow of power in electrical networks as
well as information in communication networks. Hence, such a new technical issue can benefit from some
existing techniques related to wireless communication and fault tolerant distributed computing. Among the
foregoing applications, leader election is a very critical problem. Solving the leader election problem in static
networks is easier than in dynamic networks because dynamic behavior of processes must be considered in
the latter. In particular, a simple way to solving this problem in dynamic networks is attaching a synchronous
clock to each process. But doing so violates the assumption of asynchrony. Moreover, a leader had better be a
process with the best performance-related characteristic among all nodes within a connected component. In
this paper, we present an efficient leader election algorithm with regard to performance-related characteristics
for dynamic networks, without any synchronous clock assumption.

Keywords: leader election, dynamic networks, asynchronous, broadcast, smart grid systems.

1. Introduction
Due to the growing demand for electric power and concerns about the environment impacts, currently

power distribution networks are increasingly developing toward smart grids [1], the core of which is
characterized by two-way flow of power in electrical networks and information in communication networks
[2]. Particularly, the characteristics of the power line channel vary geographically. Hence, it is not safe to
assume that a technology that works well in one area will work as well in another. Moreover, advanced
wireless systems can offer the benefits of inexpensive products, rapid deployment, and low cost installation
that wired technologies cannot provide [3]. Obviously, such wireless technical issues for smart grids can
benefit from some existing techniques of wireless communication and fault tolerant distributed computing.

Leader election is a fundamental building block for many applications, such as group communication
services, key distribution and management, routing coordination, sensor coordination, general control, and so
on. Obviously, solving the leader election problem in static networks is easier than in dynamic networks
because we have to consider the dynamic behavior of processes in the latter networks. Therefore, electing a
new leader will constantly occur in such a network. This means that the traditional solution for static
networks is not suitable for dynamic networks.

In the literature, a simple way to solving the leader election problem in dynamic networks is to attach a
synchronous clock to each process in the system. For example, in [4], the authors used the concept of
synchronous clock to indicate which node has the highest priority to be the current leader. Recently, in [5],
the authors improved the algorithm proposed in [4] in a manner that the resultant convergence time of the
new algorithm is less than the original algorithm. However, attaching a synchronous clock obviously violates
the assumption of asynchronous systems.

+ Corresponding author
 E-mail address: a d9864001@mail.nchu.edu.tw, b jichiangt@nchu.edu.tw

2012 International Conference on Smart Grid Systems (ICSGS 2012)
IPCSIT vol.45 (2012) © (2012) IACSIT Press, Singapore

6

On the other hand, in [6], the authors considered that the elected leader should be the most-valued
process from among all the processes within the connected component it resides, where the value of a
process is a performance-related characteristic. Hence, a most-valued process means that this process has the
best performance-related characteristic among all processes within a connected component, e.g. the longest
remaining battery life, shortest average distance to other nodes, etc. Obviously, electing a leader with the
best performance-related characteristic is more desirable than simply electing a random leader. For example,
electing a leader with the longest remaining battery life can postpone the time for reelecting a new leader.

In this paper, we present a new leader election algorithm with regard to performance-related
characteristics for dynamic networks. Likewise, we do not assume any synchronous clock. Moreover, our
algorithm can elect a new leader more quickly than the algorithm proposed in [6].

2. Preliminaries

2.1. System Model
A finite set ∏ of processes {p1, p2, …, pn} with n ≥ 1 is considered in the text. Unlike the usual model of

traditional fixed networks, the processes in ∏ are not necessarily aware of each other initially. This
assumption reveals the self-organization nature of the considered unstructured peer-to-peer network.

Processes in ∏ communicate with other processes by exchanging messages through reliable channel.
Hence, if the processes of two ends are correct, a message sent is eventually delivered to its destination
exactly once. Moreover, process pi can send a message to another process pj only if pj is within the
transmission range of pi, and vice versa. We also assume that processes in ∏ have the same transmission
range. This means that the communication is symmetric. Furthermore, there is no bound neither on the
transmission delay of messages nor on relative speeds of processes. Thus we face an asynchronous system.

On the other hand, a crashed process is considered as a leaving process since any process cannot
communicate with a crashed process anymore, just like the process did leave. Similarly, we also consider a
recovered process as a new joining one because any process can communicate with the recovered process
from now on, just like it did join. Moreover, the distance from node pi to node pj is defined as the minimum
number of hops among all paths from pi to pj. Obviously, if there is no path from pi to pj, the distance
between pi to pj is infinite. Note that we use the terms “process” and “node” interchangeably in this paper.

In order to facilitate explaining the ideas proposed in this paper, we describe a few technical terms first.
Definition 1: In a network, a process is called a neighbor of pi if and only if it is within the transmission

range of pi.
In the text, we denote the set of neighbors of pi as neighborsi. Particularly, a process can employ the

techniques of Probe and Reply proposed in [6] to find which neighbor has left its transmission range or
which node has entered its transmission range. In other words, we can assume that a process is able to know
its neighbors all the time, even the topology is dynamic. Obviously, a neighbour of pi is a node with one hop
away from pi.

Definition 2: In a network, a process is called a participant of pi if and only if it and pi are in the same
connected component of the network topology.

Namely, a process can route a message to any of its participants since there exists at least one path from
the process to any participant in the network topology. In the text, the set of participants of pi is denoted as
participantsi. Moreover, neighborsi is a subset of participantsi. For example, in Figure 1(a), p1, p3 and p7 are
the neighbors of p9; while p1, p3, p4 and p7 are the participants of p9. Besides, p2 is not within the transmission
range of any participant of p9, so p2 and p9 cannot communicate mutually. Evidently, the two nodes p2 and p9,
which belong to two disconnected parts, will elect distinct nodes as the leader.

2.2. The Specification of Leader Election
In the classical leader election problem for static networks, every process pi in the network eventually

elects the same leader [7]. Later, the authors in [4]-[6] adapted the classical definition for dynamic networks.
They just assumed that every connected component will eventually have a unique leader, but not that
eventually there is a unique leader in the system. Such a new definition is more proper for dynamic networks

7

because dynamic networks may contain some disconnected parts. Moreover, in [6], the elected leader must
be the most-valued node because electing a leader with the best performance-related characteristic is more
desirable than simply electing a leader randomly. Accordingly, the specification of the leader election
problem for dynamic networks is given below:

Definition 3: The specification of the leader election problem for dynamic networks is:
1) For every connected component, there is a unique eventual leader.
2) The eventual leader of a connect component is the highest priority node among all the nodes within

the component, where the priority of a node is based on the considered performance-related characteristic,
using the node ID to break ties among nodes with the same value.

Fig. 1: (a) A topology contains two connected two components; (b) The topology after some nodes in (a) moves

3. The Leader Election Concept and Algorithm
In this section, we start to present our algorithm for solving the leader election problem. Foremost, the

core property of our algorithm is that in a connected component, if every process broadcasts its neighbor set
and any received neighbor set from another process, every process can finally know the existence of all other
processes in the same component. Therefore, we know that a process can know all its participants by all
processes broadcasting their neighbor sets as well as any received neighbor sets. Finally, all processes will
choose the same process as their leader, i.e. the one with the best performance-related characteristic among
all processes in the component.

Obviously, the values of the considered performance-related characteristic of any two nodes may not be
distinct. For example, in Figure 1(a), the value of the considered performance-related characteristic of each
process is shown in the bracket in the corresponding node. We can see that p4 and p7 in Figure 1(a) have the
same value. If such a scenario happens, we use the Node ID of these nodes to break the tie. Particularly, the
node with the smallest ID will be considered. For instance, since p4 and p7 in Figure 1(a) have the same
performance-related characteristic value, we will choose p4 as the highest priority node in this component.

In [6], the authors used several distinct cases to explain the behavior of dynamic networks. However,
these cases cannot cover all possible behavior of dynamic networks due to rapid node mobility. By using the
concept shown above, our algorithm can solve such an issue. Furthermore, the algorithm in [6] adopted the
concept of “growing and shrinking” to discover all processes in the same component. Then any process uses
the collective information to elect the leader and broadcasts its decision to all nodes in the same component.
Obviously, such a concept requires that messages traverse a component three times for an election, i.e.
growing, shrinking and broadcasting the decision about the leader. Yet, our concept only needs that any
message from each node traverses a component one time for electing the leader. Particularly, upon receiving
messages from all other processes in the same component, a process can immediately find the process with
the best performance-related characteristic among all its participants.

In light of the idea introduced in the above, we further present the leader-election algorithm for dynamic
networks. In particular, unlike static networks, the knowledge of a node in dynamic networks may be
decreasing. Hence, instead of adopting the assumption of synchronous clocks, we use the following concept
of routing history to deal with such a critical situation.

Definition 4: The routing history of a message contains all processes by which the message is traversed.

8

Trivially, while a process pi receives a message, pi can learn all the processes belonging to the path traversed
by the message via the routing history of the message. More specifically, the routing history can prevent a
node from sending the backflow message below:

Definition 5: A backflow message is a message that one process pi transmits to another process pj, and pj
transmits it back to pi later.

Obviously, the information carried on a backflow message may be obsolete and then makes the problem
more sophisticated and more difficult. For instance, consider the network topology shown in Figure 1(a).
Since there are two disconnected components in it, two leaders will be elected in each component, i.e. p4 and
p2. Now assume that some nodes move, and then the foregoing topology becomes the topology depicted in
Figure 1(b). Particularly, because p4 moves out of the transmission range of p3, p4 and p3 cannot
communicate with each other from now on. Simultaneously, p2 enters the transmission range of p9 such that
p2 and p9 can communicate mutually from now on. By detecting p4 leaving, p3 can tell p9 the fact. Without
the routing history piggybacked on messages, after p7 transmits a backflow message to p9 that had been
originally created by p3 before p4 left, p9 will consider that p4 is in the component again if the backflow
message arrives after p3 has told p9 that p4 left. If the aforementioned scenario happens again and again, the
participant set of p9 will not be stable forever. With the routing history, the foregoing scenario can be
avoided because a node can never receive a message originally sent from itself by checking the routing
history carried on received messages. Consider the above example again. All backflow messages broadcast
by p7 back to p9 were sent by p9 earlier. Therefore, p9 is contained in the routing histories of these messages.
By checking the routing history, p9 can discard those backflow messages.

Now we begin to describe our leader election algorithm for dynamic networks presented in Figure 2. In
the beginning, every process pi takes its identification and the value of the performance-related characteristic
as the input (lines 1-2). Subsequently, it initiates the algorithm by executing the init phase. First, pi adds
those nodes within its transmission rage and itself to neighborsi (lines 7-8). Similarly, it sets participantsi to
neighborsi to indicate that its initial knowledge about process only includes its neighbors (line 9). Then it
elects the node with the highest priority in its current participantsi set as the current leader (line 10). Finally,
pi broadcasts neighborsi for informing the existence of its neighbors to other nodes in the same component
(line 11). On the other hand, upon receiving a message carrying neighborsj, if pi is not in the routing history
of the message, it means that pi can update its knowledge through neighborsj (line 12). Such a condition can
prevent pi from receiving a backflow message as well as broadcasting forever, even after they already know
all nodes in the same component. Then pi adds itself to the routing history of the message carrying neighborsj
for noting that it has received such a message and accordingly has updated its participantsi set (lines 13-14).
Also, pi elects the node with the highest priority in its current participantsi set as the current leader (line 15).
Then pi broadcasts neighborsj to other processes in the same component (line 16).

There are two more affairs required to be conducted in dynamic networks. First, upon detecting
neighbors changing, pi updates both its neighborsi and participantsi sets (lines 17-18). Hence, it must reelect
the node with the highest priority in its current participantsi set as the new leader (line 19). Subsequently, pi
broadcasts the new neighborsi set for informing the existence of nodes in neighborsi to other nodes in the
same component (line 20). Particularly, pi also broadcasts the reelectioni message to ask other nodes in the
same component to broadcast their neighbor sets and elect their leaders again (line 21). On the other hand,
upon receiving the reelectionj message, if pi is not in the routing history of reelectionj, pi adds itself to the
routing history of reelectionj for noting that it has received such a message (lines 22-23). Then it also
broadcasts its neighborsi set again and routes the reelectionj message to its neighbors (lines 24-25).

Obviously, the routing history can also help a process tolerate network partition. Since the participants of
a process pi in dynamic networks may be decreasing instead of increasing, the update operation may remove
some processes from its participantsi set while pi detects network partition or receives a message about
network partition. Now consider the situation where the topology shown in Figure 1(a) is changed to the one
in Figure 1(b). We can see that p4 knows that a neighbor, i.e. p3, has left its transmission range or crashed.
Then p4 must discard all information obtained via p3. As a result, there is only one node, i.e. p4, in both the
two sets neighbors4 and participants4. This means that p4 will elect itself as the current leader.

9

4. Conclusions
In this paper, we have explored the problem of leader election in dynamic networks, where not only the

topology will change but also processes may crash. Moreover, we use the routing history of messages to deal
with the dynamic behavior of networks instead of adopting the synchronous clock assumption. Doing so
makes the leader election problem easier to solve in practice. Particularly, the elected leader is the one with
the best performance-related characteristic among all nodes within the same connected component.
Therefore, our result can be applied to smart grid systems to improve the efficiency of energy use.

Fig. 2: The algorithm for dealing with the leader election problem in dynamic networks.

5. Acknowledgements
This work was supported by the National Science Council, Taiwan, ROC, under Grant NSC 100–2221–

E–005–038.

6. References
[1] A. Maneerung, S. Sittichivapak, and K. Hongesombut, “Application of Power Line Communication with OFDM

to Smart Grid Systems,” Proc. 8th Int’l Conf. Fuzzy Systems and Knowledge Discovery (FSKD), pp. 2239–2244,
2011.

[2] P. P. Parikh, M. G. Kanabar, T. S. Sidhu, “Opportunities and Challenges of Wireless Communication
Technologies for Smart Grid Applications,” IEEE Power and Energy Society General Meeting, pp. 1–7, 2010.

[3] F. Cleveland, “Use of Wireless Data Communications in Power System Operations,” IEEE Power Systems
Conference and Exposition, pp. 631–640, 2006.

[4] N. Malpani, J. Welch and N. Vaidya, “Leader Election Algorithms for Mobile Ad Hoc Networks,” Proc. 4th Int’l
Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, Boston, MA,
August 2000.

[5] A. Derhab and N. Badache, “A Self-Stabilizing Leader Election Algorithm in Highly Dynamic Ad Hoc Mobile
Networks,” IEEE Trans. Parallel and Distributed Systems, vol. 19, no. 7, JULY 2008.

[6] S. Vasudevan, J. Kurose, D. Towsley, “Design and Analysis of a Leader Election Algorithm for Mobile Ad Hoc
Networks,” IEEE Proc. 12th Int’l Conf. Network Protocols, pp. 350-360, Oct. 2004.

[7] N. Lynch, Distributed Algorithms, Morgan Kaufmann, San Francisco, 1996.

10

