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Abstract. Recent works on detector algorithms in multiple-input multiple-output orthogonal frequency 
division multiplexing (MIMO-OFDM) system were mainly focused on sphere detector, which provides a 
tradeoff between complexity and performance by suitably choosing the “radius” or the number of candidates 
in the search space. Meanwhile, another approach, called poly-diagonalization and trellis detector, has been 
proposed to compromise the complexity and performance in [13] and developed in [14]. In this paper, we 
compare sphere decoding and asymmetrical poly-diagonalization approach with the variable in terms of both 
complexity and performance. The performance is evaluated in frequency selective fading channel 
environment on the basis of orthogonal frequency division multiplexing with channel codes, where the 
generation of soft decision values is crucial. The results show that the performances of poly-diagonalization 
approach and sphere decoding have their own advantages at low and high computational complexity 
respectively. 
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1. Introduction 
The increasing data rates in wireless communication systems require large bandwidths. Orthogonal 

frequency division multiplexing (OFDM) [1] has become a widely used technique to significantly reduce 
receiver complexity in broadband systems. Multiple–input multiple-output (MIMO) channels offer improved 
capacity and significant potential for improved reliability compared to single antenna channels [2]. MIMO 
techniques in combination with OFDM (MIMO-OFDM) have been identified as a promising approach for 
high spectral efficiency wideband systems. A coded MIMO-OFDM system (i.e., with an outer channel coding) 
can obtain the diversity gain and the coding gain simultaneously, and hence, obtain additional performance 
improvement.  

In order to take the full advantage of this capacity increase, efficient and reliable receivers need to be 
developed for successful application of such MIMO techniques. Traditionally, in the context of multiuser 
detection, the receivers are classified into three types, i.e., maximum likelihood (ML) detector [3], [4], linear 
detectors [5], [6], and Successive interference cancellation (SIC) detector [7]. Recently, however, other 
alternatives, such as the sphere decoding and the channel truncation approach, have been developed and 
studied rigorously. The Sphere detector (SD) [8-12] employs QR decomposition, which effectively 
triangularizes the channel and, utilizing this channel structure, it uses a sort of tree search, where, by reducing 
the search space, it can provide a tradeoff between the complexity and performance. It constitutes the most 
promising low complexity near-ML detector class, and hence its representatives have attracted substantial 
research attention. In general, the sphere decoding algorithm can be categorized into two types; depth-first 
search and breadth-first search algorithms. The K-best LSD algorithm (KLSD) in [9] is a breadth-first search 
algorithm having fixed complexity. More recently, a channel truncation approaches was proposed in [13] and 
[14]. Similar to the sphere decoding, it is also a two-stage detector where, in the first stage, it converts the 
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channel into a poly-diagonal form and, by utilizing the poly-diagonal structure, it employs trellis search, rather 
than tree search. This scheme also can provide tradeoff between the complexity and performance by choosing 
an appropriate order of poly-diagonalization. In this paper, we compare K-best List Sphere detectors (KLSD) 
and Asymmetrical Poly-diagonalization and tail-biting trellis detectors (ASY-PD) with variable in coded 
transmissions and frequency selective fading channel environments. The generation of soft decision will also 
be included for performance and complexity comparison since it is crucial for the channel coding. 

2. System Model 
An OFDM-based MIMO transmission system is considered, with TN  transmit, RN  receive antennas and 

scN  subcarriers, each of which employ a quadrature amplitude modulation (QAM) constellation of alphabet A 
of size |A| = 2Ω, where Ω denotes the number of bits per symbols. We denote the TN ×1 symbol vector for the 
kth subcarrier as 

1( ) = [ ( ), , ( )]
T

Tt t
Nk s k s ks …                                            (1) 

where ( )t
ms k  is the input symbol to the m-th transmit antenna on subcarrier k in the tth time, and ( )T

⋅ denotes 
the transpose operation. For each antenna, the number Nsc of data symbols are then passed to OFDM 
modulator, where the Nsc data symbols are transformed by inverse Discrete Fourier Transform (IDFT) and 
transmitted after adding the cyclic prefix (CP). The superscript t will be omitted in the sequel since it is clear 
from the context. 

The received vector ( )ky  after removed CP and demodulated with Discrete Fourier Transform (DFT)  and 
n(k) as a noise vector of length RN  can be expressed as 

( ) ( ) ( ) ( )k k k k= +y H s n , k = 0, …, 1scN −                         (2) 

where the DFT-transformed additive white Gaussian noise (AWGN) ( )kn  is assumed with zero mean and 
variance 2

nσ  per RN  receiver antenna with scN  subcarriers. 
The frequency MIMO channel impulse response can be described by scN  complex channel matrices 
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of the dimension .R TN N×  

3. KLSD and ASY-PD 

3.1. KLSD 
This algorithm utilizes the so-called QR decomposition to convert the channel into a triangular form and, 

then, a sort of reduced tree search is used to determine the soft decision values. The QR decomposition can be 
performed either ZF sense or in MMSE sense. The QR decomposition in ZF sense is straightforward, i.e., we 
decompose the channel as H = QR where Q is a unitary matrix and R is a triangular matrix. Hence, by 
multiplying y by QH, the channel can be effectively converted into a triangular–type channel making it 
convenient for tree search. One of drawback in QR decomposition in ZF sense is the noise boost, as in ZF 
equalizer, especially for higher layer. And the QR decomposition in MMSE sense [9] would have better 
performance than that in ZF sense. As proposed in [9], it can be performed by the extended channel matrix, H, 
and the extended received vector, y, defined as 

1
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where Q is a (NT + NR) × NT matrix with orthogonal column and R is an NT × NT upper triangular matrix. By 
multiplying y by QH, we have 
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2 1' H H H
nσ= = − +y Q y Rx Q x Q n                                         (5) 

where the second term in the right hand side is the residual interferences. The effective noise variance, n̂ ,
2

kσ , 
for the kth layer is given by the diagonal component of 2

nσ (HHH)-1. 
For the post-tree search algorithm, we consider the K-best LSD algorithm in [10] in this paper since its 

complexity is fixed. In the simulation, we use the same one in [10], which will be briefly described here. Let 
( )1, ,...,T TN

NTi i is s s+=s  denote a vector consisting of the last NT −i+1 elements of s and define the squared partial 
Euclidean distance (PED) at the ith layer as 
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where rj,l is the (j,l)th element of the upper triangular matrix R or R. Note that we weighted the squared 
distance by the inverse of the effective noise variance. Based on the squared PED, the algorithm finds the 
fixed number K of symbols at each layer and stores them for the further tree search step. Once the algorithm 
finishes the tree search, the LLR for each bit, say mth, is given by 

1 0
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s s

s s
                                       (7) 

where b
m AΦ ⊂ denotes the set of candidate symbol vectors (candidate list) whose mth bit is equal to b . 

One problem in calculating (7) under the reduced K-best tree search is that LLR cannot be obtained when 
no surviving symbol candidates whose mth bit is either bit 0 or 1 remain. In [15-16], an efficient LLR clipping 
method to combat this problem was proposed in the following. 
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The simulator takes into account the effect of LLR clipping with threshold max 8L =  [4]. 

3.2. ASY-PD 
The detector is similar to the concatenated channel shortening equalizer and maximum likelihood 

sequence estimator, developed for Gaussian ISI channel. The poly-diagonalization can be regarded as a 
structured channel shortening/truncation, of which the main idea is to allow interference partially in order to 
reduce the noise boost which can be severe if the channel inversion is used. Once the channel is converted into 
a poly-diagonal form, the trellis decoding is applied by utilizing the poly-diagonal structure of the underlying 
channel. As in linear detectors and sphere decoding, poly-diagonalization can also be performed either in ZF 
sense or in MMSE sense. 

Let BL be a NR ×NT  poly-diagonalization matrix of order L such that, for arbitrary diagonal matrices, Dl, l 
= 0, …, L-1, the MIMO channel is effectively poly-diagonalized; i.e., 

1
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where the effective channel is represented by a sum of shifted diagonal matrices, i.e., the poly-diagonal form. 
Each column of BL, bL,k, can be obtained by first dividing the channel matrix into three terms; the desired 
signal, hk, the ‘don’t cares’, ,L kH , and the interferences to be nullified or suppressed, ,L kH . For the poly-
diagonalization in the ZF sense (PD-ZF), bL,k is given by 

( ), , , , ,
1( ) H

L k kL k L k L k L k
H −= − ⋅I H H H Ha h                                       (10) 

asymmetric formulation: 

                                                                    ( ), , , , 1,
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where the term in the parenthesis is the projection matrix which projects the desired vector, hk, onto the null 
space of 

kL,H [13]. And, for the poly-diagonalization in the MMSE sense (PD-MM), bL,k is given by 

,
2

, ,
1( )L

H
k n kL k L k σ −= + ⋅H H Ia h                                              (12) 

asymmetric formulation: 

,,
2

1,
1( )L kL k

H
n k LL k σ − +−= + ⋅H H Ib h                                        (13) 

once the channel is converted into a poly-diagonal form, the trellis decoding is applied for joint detection. 
The post decoding can be summarized as follows: Let us first define the state vector of the kth trellis stage as 

( )( 1) ( 2), ,..., .
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where ( ) ( )/ kk p yp ′=s x  is a constant for uniform a priori probability and the transition probability is given 
by 
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, 1.H
k n L k k Lσ σ − +′′ = b h Using this branch metric, the forward-backward recursion can be 

effectively implemented in log-domain as follows: 
[Initialization] 
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[Recursion] 
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where Tp(x) and Tn(x) are the set of states of the previous and the next trellis stage, respectively, connected to 
the state vector labeled as x of the current stage. Note that due to the tail-biting structure of the channel, the 
recursion can be iterated indefinitely and, indeed, we need more recursions than the number NT to produce 
reliable state distribution of edge antennas, i.e., the first and the last. As suggested in [14], however, 2 turns of 
iterations is enough for the convergence of the state variables. 

Once the recursive computation is done, the log a posteriori probability estimate is obtained by 

( ) log ( ) log ( )k kkL βα= = +s x x x                                            (15) 

and the LLR for each bit, say the mth, is obtained by 
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max ( ) max ( )

mm

k km
A

L L L
A∈ ∈

= = − =
x x

s x s x                                      (16) 

where 1Lb
mA A −⊂ denotes the set of data symbols whose mth bit (included in the vector sk) is equal to b. 
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4. Simulation Results 

4.1. Complexity 
The computational complexity of several arithmetic operations can be summarized in Table 1 [17]. A 

refers to real addition, M refers to real multiplication, AC refers to complex addition, MC refers to complex 
multiplication. In the following, the complexity of the algorithms is given in terms of complex floating point 
operations (flops). A complex multiplication/division requires 3 flops, and complex addition requires 1 flops. 

Table 1 Computational complexity of arithmetic operations 

Operation Inputs Outputs Complexity Flops 
Complex 

multiplication Two complex Complex 4M+2A 3.0 

Complex by real Complex and 
real Complex 2M 1.0 

Square root Real Real M 0.5 
Complex power Complex Real 2M+A 1.5 

Real division Two real Real M 0.5 
Complex division Two complex Complex 8M+3A 5.5 

Complex division Complex and 
real Complex 2M 1.0 
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4.2. Performance 
For the performance evaluation, link level simulations have been performed on top of coded MIMO-

OFDM in a frequency selective fading channels. Regarding the channel model, each path (between a Tx 
antenna and a Rx antenna) is assumed to experience uncorrelated frequency selective fading with power 
profile: [0, -3, -6, -9, -12] (dB) and delay profile: [0, 1, 2, 3, 4] (samples). The power profile was normalized 
to 1. 

The BER performance comparisons of KLSD and ASY-PD for 6 6× antenna configuration, 4QAM 
modulation and diffident code rate are shown in Figure.1. The tendency in KLSD, where the performance 
difference between ZF and MMSE preprocessor is obvious for 4QAM and the gap between ZF and MMSE 
preprocessor will get smaller with the size of candidate for given modulation size [18] and the performances 
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are improved with the variable K increased. The Asymmetrical PD shows similar tendency, i.e., the PD in ZF 
and MMSE shows a distinguishable difference for 4QAM and the performances get better with the variable L 
increased except L equal five. This tendency corresponds to the analytical results in [14]. 

  
Fig. 1. The BER performance comparisons of KLSD and ASY-PD  

4.3. Tradeoff Behavior 
Table 2 and Figure.2 demonstrate the tradeoff behavior of the detectors with their variables for 6 6× antenna 

configuration, 4QAM modulation and diffident code rate.  It shows the SNR [dB] when BER is 10-4 and the Flops for the 
KLSD and Asymmtrical PD respectively. The performance of KLSD has an advantage over PD for the code rate is high 
(i.e., R=2/3) while ASY-PD is better to KLSD for the low code rate (i.e., R=1/2) in the less complexity. 

Table 2 Tradeoff Behavior ( )6 6, 4QAM×  

 K=5 K=12 K=160 K=4096 (ML) 

KLSD-ZF 

SNR (dB) 
(2/3) 3.0 1.83 1.33 1.0 

SNR (dB) (1/2) 0.2 -0.2 -1.35 -1.5 
Flops 11958 26196 243996 1601052 

KLSD-MM

SNR (dB) 
(2/3) 2.2 1.7 1.3 1.0 

SNR (dB) 
(1/2) -0.21 -0.6 -1.38 -1.5 
Flops 12262 26500 244300 1601356 

 L=2 L=3 L=4 

ASY-PD-ZF 

SNR (dB) 
(2/3) 4.6 2.5 1.51 

SNR (dB) 
(1/2) 1.7 -0.23 -1.19 

Flops 10894 20648 239058 

ASY-PD-
MM 

SNR (dB) 
(2/3) 3.0 2.2 1.35 

SNR (dB) 
(1/2) -0.5 -0.72 -1.28 

Flops 12199 24299 244059 

 
Fig. 2. Tradeoff  behavior ( 6 6× , 4QAM) 

5. Conclusion 
This paper has presented the comparisons of two detector algorithms in MIMO-OFDM systems, i.e, K-

Best Sphere detectors (KLSD), Asymmetrical Poly-diagonalization in ZF and MMSE senses and tail-biting 
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trellis detectors (ASY-PD) in coded transmissions and frequency selective fading channels. We present how to 
get the soft-output of both detection algorithms in section 3 and compare the performance and complexity of 
the detection algorithms in section IV. Judging from the tradeoff behavior, we find the performance of the 
former has an advantage over the latter for the code rate is high while the latter is superior to the former for 
the code rate is low in the less complexity. Anyhow, the two algorithms effectively provide a tradeoff between 
complexity and performance, and the choice of detection scheme can be based further on easiness of hardware 
implementation and so on.  
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