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Abstract. In wired or wireless networks, routing efficiently among immobile or mobile devices is an 
important issue. A connected dominating set (CDS) brings benefits to network routing. The CDS can be 
served as a virtual backbone of a network, and it always adapted easily to new network topology. A virtual 
backbone is a set of vertices which can help with routing. Any vertex outside the virtual backbone can send 
messages or signals to another vertex through the virtual backbone. So the virtual backbone has great benefits 
to routing and management of networks. We may impose a virtual backbone to support short path routing, 
fault-tolerant routing, multi-casting, and radio broadcasting, etc. In this paper, we focus on constructing the 
minimum CDS (MCDS) of the n-dimensional hypercubes and n-dimensional star graphs.  

Keywords: connected dominating set, virtual backbone, routing, hypercube, star graph. 

1. Introduction 
For the graph-theoretical terminology and notation, we follow [1]. G = (V, E) is a simple graph if V is a 

finite set and E is a subset of {(u,v) | (u,v) is an unordered pair of V}. We say that V is the vertex set and E is 
the edge set. Given a connected graph G = (V, E) and a vertex set R ⊆ V. R is a dominating set (abbreviated 
as DS) if each vertex in G is either in R or has at least a neighbor in R; R is a connected dominating set 
(abbreviated as CDS) if R is a dominating set and the induced subgraph G[R] is connected. A CDS with 
minimum cardinality is called a minimum connected dominating set (abbreviated as MCDS) [4,6,12]. Fig. 1 
gives examples of the DS, CDS, and MCDS of a network G.  

A connected dominating set (CDS) brings benefits to network routing. The CDS can be served as a 
virtual backbone of a network, and it always adapted easily to new network topology. A virtual backbone is 
a set of vertices which can help with routing. Any vertex outside the virtual backbone can send messages or 
signals to another vertex through the virtual backbone. So the virtual backbone has great benefits to routing 
and management of networks. We may impose a virtual backbone to support short path routing, fault-tolerant 
routing, multi-casting, and radio broadcasting, etc [7,18]. Furthermore, a virtual backbone of a wireless 
network may reduce communication overhead, increase bandwidth efficiency, and decrease energy 
consumption [13]. Therefore, the virtual backbone of a network with better network topologies benefits 
better performance of the network. 

An ad-hoc network or a wireless sensor network is usually composed of a group of wireless vertices, the 
network can be considered as a unit disk graph [3], which is abbreviated as UDG. To obtain an MCDS in a 
UDG is an NP-hard problem [5]. Many literature references discussed the MCDS on UDG by approximation 
algorithms [4,6,7,8,16,17,18]. On some specific wired networks, there are also some related results. The 
MCDS of meshes was discussed in [10]; the CDS of trapezoid graphs and generalized trapezoid graphs was 
discussed in [17] and [11], respectively. 
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Fig. 1: (a) a DS of G; 

 
(b) a CDS of G; 

 
(c) an MCDS of G. 

In this paper, we focus on constructing the MCDS of n-dimensional hypercubes and n-dimensional star 
graphs. In Section 2, two networks hypercubes and star graphs are introduced. In Section 3, for hypercubes 
and star graphs, we investigate in the upper bounds of cardinality of their MCDS. For the lower dimensional 
hypercubes and star graphs, we show the lower bounds of cardinality of their MCDS. Section 4 gives the 
concluding remarks. 

 

2. Hypercubes and Star Graphs 
The hypercube is a popular network because of its attractive properties, including regularity, symmetry, 

small diameter, strong connectivity, recursive construction, partitionability, and relatively low link 
complexity [14,15]. Let n be a positive integer. An n-dimensional hypercube, denoted by Qn, is an n-regular 
graph with 2n vertices. Each vertex v in Qn can be distinctly labelled by an n-bit binary string, 
v = ݒ௡ݒ௡ିଵ ௡ିଵݒ௡ݒ ଵ. For 1 ≤ i ≤ n, we use vi to denote the binary stringݒ… ௜ݒ…  ଵ. The Qn consists of allݒ…
n-bit binary strings representing its vertices. Two vertices u and v are adjacent if and only if v = ui with some 
i. An n-dimensional hypercube Qn can be constructed from two identical (n−1)-dimensional hypercubes, ܳ௡ିଵ଴  and ܳ௡ିଵଵ , where V(ܳ௡ିଵ଴ ௡ିଵݒ௡ݒ} = ( ௡ݒ | ଵݒ…  = 0} and V(ܳ௡ିଵଵ ௡ିଵݒ௡ݒ} = ( ௡ݒ | ଵݒ…  = 1}. The vertex 
set of Qn is V(Qn) = V(ܳ௡ିଵ଴ ) ∪ V(ܳ௡ିଵଵ ), and the edge set is E(Qn) = E(ܳ௡ିଵ଴ ) ∪ E(ܳ௡ିଵଵ ) ∪ M where M is a 
set of edges connecting the vertices of ܳ௡ିଵ଴  and ܳ௡ିଵଵ  in a one to one fashion. 

Let n be a positive integer. The n-dimensional star graph, denoted by Sn, is an (n−1)-regular graph with n! 
vertices. The vertex set V(Sn) = {ݒ௡ݒ௡ିଵ  ௞ for j≠k }. The adjacency is definedݒ≠௝ݒ ௜∈{1,2,…,n} andݒ | ଵݒ…
as follows: ݑ௡ݑ௡ିଵ ௜ݑ… ௡ିଵݒ௡ݒ ଵ is adjacent toݑ… ௜ݒ…  ଵ through an edge of dimension i with 1≤ i ≤n−1ݒ…
if ݑ௝ = ݒ௝ for j ∉ {i, n}, ݑ௡ = ݒ௜ , and ݑ௜ = ݒ௡. According to the recursively constructed structure of the star 
graphs Sn, an Sn could be partitioned into n identical (n−1)-dimensional star graphs, denoted by ሼܵ௡ିଵ௫  | 1 ≤ x 
≤ n}, and V(ܵ௡ିଵ௫ ௡ିଵݒ௡ݒ } = (  ௞ for j ≠ k }. The attractive features ofݒ ≠ ௝ݒ ௜ ∈ {1,2,…,n}\{x} andݒ | ݔଶݒ…
the star graphs include vertex and edge symmetry, low degree of the vertex, small diameter, surface area, 
recursive structure, high degree of fault tolerance, and diagnosability [2,9]. 

In this paper, we shall investigate in the MCDS of hypercubes and star graphs, denoted by MCDS(Qn) 
and MCDS(Sn) respectivitly. 

 

3. Minimum Connected Dominating Set of Hypercubes and Star Graphs 
According to the recursively constructed structure of the hypercubes Qn, a Qn could be partitioned into 

eight identical (n−3)-dimensional hypercubes, denoted by { ܳ௡ିଷ௜௝௞  | i,j,k∈{0,1}}, and V( ܳ௡ିଷ௜௝௞ )  
௡ିସݒ௡ିଷݒ݆݇݅} = ଵݒ…  ௜∈{0,1} for  1 ≤ i ≤ n−3 }. An upper bound of cardinality of the MCDS ofݒ | 
hypercubes is shown in the following theorem. 

 
Theorem 1  Given an n-dimensional hypercube Qn for n ≥ 3. |MCDS(Qn)| ≤ 2n−2 + 2. 
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Proof. To show that |MCDS(Qn)| ≤ 2n−2 + 2 for n ≥ 3, a construction scheme is given as follows. Let 
i,j,k∈{0,1} and CDS(Qn) = V(ܳ௡ିଷ௜௝௞ ) ∪ V(ܳ௡ିଷ௜௝௞ ௡ିସݒ௡ିଷݒ݆݇݅} ∪ ( ௡ିସݒ௡ିଷݒ݆݇݅ ,ଵݒ…  ௫∈{0,1}ݒ ଵ}, whereݒ…
for 1 ≤ x ≤ n−3. Then, the induced subgraph Qn[CDS(Qn)] is connected and each vertex v of Qn is either in 
CDS(Qn) or has at least a neighbor in CDS(Qn). Thus, CDS(Qn) is a connected dominating set of Qn and 
|CDS(Qn)| = 2n−2 + 2. As a result, |MCDS(Qn)| ≤ 2n−2 + 2  for n ≥ 3.                                                                   

 
Let's take the hypercube Q5 for an example. Let i=0, j=0, k=0, ݒଶ=0, and ݒଵ=0. Then, CDS(Q5) = V(ܳଶ଴଴଴) 

∪ V(ܳଶଵଵଵ) ∪ {10000, 11000}, and thus CDS(Q5) is a connected dominating set of Q5 with |CDS(Q5)| = 25−2 
+ 2 = 10. As a result, |MCDS(Q5)| ≤ 10. See Fig. 2. 

 
Fig. 2: A CDS of the hypercube Q5. 

For the lower dimensional hypercubes Qn, n = 3,4,5, we have shown the lower bounds of cardinality of 
their MCDS that |MCDS(Qn)| ≥ 2n−2 + 2 by brute force. Since the proof is tedious and long, we omit it here. 
By Theorem 1, |MCDS(Q3)| = 4,  |MCDS(Q4)| = 6, and |MCDS(Q5)| = 10. Hence, we have the following 
conjecture. 
Conjecture 1  Given an n-dimensional hypercube Qn for n ≥ 3. |MCDS(Qn)| = 2n−2 + 2. 

An upper bound of cardinality of the MCDS of star graphs is shown in the following theorem. 
Theorem 2  Given an n-dimensional star graph Sn for n ≥ 3. |MCDS(Sn)| ≤ 2(n−1)!. 

Proof. To show that |MCDS(Sn)| ≤ 2(n−1)! for n ≥ 3, a construction scheme is given as follows. Let 
x ∈ {1,2,…,n} and CDS(Sn) = { ݒ௡ݒ௡ିଵ ݔଶݒ… ௜ݒ |    ∈ {1,2,…,n}\{x} and ݒ௝ ௞ݒ ≠   for j ≠ k } ∪ 
௡ିଶݒ௡ିଵݒݔ }  ௞ for j ≠ k }. Then, the induced subgraph Sn[CDS(Sn)] isݒ ≠ ௝ݒ ௜ ∈ {1,2,…,n}\{x} andݒ |   ଵݒ…
connected and each vertex v of Sn is either in CDS(Sn) or has at least a neighbor in CDS(Sn). Thus, CDS(Sn) 
is a connected dominating set of Sn and |CDS(Sn)| = 2(n−1)!. As a result, |MCDS(Sn)| ≤ 2(n−1)! for n ≥ 3.      

Let's take the star graph S4 for an example. Let x = 1 and thus CDS(S4) = { ݒସݒଷݒଶ1 | ݒ௜ ∈ {2,3,4} and ݒ௝ 
 Then, CDS(S4) is a connected dominating .{ ௞ for j ≠ kݒ ≠ ௝ݒ ௜ ∈ {2,3,4} andݒ | ଵݒଶݒଷݒ1 } ∪ { ௞ for j ≠ kݒ ≠
set of S4 and |CDS(S4)| = 2(4−1)! = 12. As a result, |MCDS(S4)| ≤ 12. See Fig. 3. 

 

Fig. 3: A CDS of the star graph S4. 
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For the lower dimensional star graphs Sn, n = 3,4, we have shown the lower bounds of cardinality of their 
MCDS that |MCDS(Sn)| ≥ 2(n−1)! by brute force. Since the proof is tedious and long, we omit it here. By 
Theorem 2, |MCDS(S3)| = 4 and |MCDS(S4)| = 12. Hence, we have the following conjecture. 
Conjecture 2  Given an n-dimensional star graph Sn for n ≥ 3. |MCDS(Sn)| = 2(n−1)!. 

4. Concluding Remarks 
The hypercubes Qn and star graphs Sn are both recursively constructed networks, and they have many 

attractive properties. This paper demonstrates upper bounds of cardinality of the MCDS of hypercubes and 
star graphs. For the lower dimensional hypercubes and star graphs, we give lower bounds of cardinality of 
their MCDS. Therefore, we have conjectures that |MCDS(Qn)| = 2n−2 + 2 and |MCDS(Sn)| = 2(n−1)! for n ≥ 3. 
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