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Abstract. In this paper a modified Normalized Least Mean Square (NLMS) algorithm is derived using past 
weight vectors and adaptive learning rate for nonstationary channels. The proposed minimization criterion 
minimizes the mean square error (MSE) of currently updated weight vector and past weight vector. The MSE 
of the modified NLMS algorithm is plotted for various values of adaptive learning rate from zero to one. The 
result shows that as the adaptive learning rate decreases the convergence rate increases. The result also shows 
that the modified NLMS algorithm with active weight detection is capable of determining changes in position 
and strength of the weight vector coefficients in time-varying channel. 
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1. Introduction  
A wide variety of recursive algorithms have been developed for the operation of linear adaptive filters. 

The choice of one algorithm over another is determined by one or more of the factors such as, rate of 
convergence, misalignment, computational complexity [1-2]. For nonstationary environment the tracking 
factor is important to track the statistical variations. Thus the desired objective can be achieved by altering 
the minimization criterion of an algorithm. The NLMS algorithm is designed to overcome the difficulty of 
gradient noise amplification problem suffered by Least Mean Square (LMS) algorithm. The conventional 
affine projection (AP) algorithm is modified using the set-membership affine projection (SM-AP) algorithm. 
The minimization criterion of SM-AP is derived using set-membership filtering to reduce the computational 
complexity of the conventional affine projection [3]-[4]. The modified criterion were developed for 
improving numerical stability using Leaky recursive least squares (LRLS) and leaky least mean squares 
(LLMS) algorithms [5]. 

A new update formula was designed called the momentum LMS (MLMS) by adding a momentum term 
which contains previous weight vectors [6]. The method reduces the misalignment, but adding a momentum 
term is not based on a specific criterion. An improved NLMS was designed using a specific criterion for 
stationary channel [7]. In this paper, we develop a modified minimization criterion of the NLMS algorithm 
for nonstationary channel using the adaptive learning rate which minimizes the summation of each squared 
Euclidean norm of difference between the currently updated weight vector and past weight vectors. The new 
minimization criterion of our algorithm which is based on past weight vectors and adaptive learning rate for 
nonstationary channel shows improved convergence speed as the adaptive learning rate decreases. 

There are various ways in which the nonstationary or time-varying channel can be modelled. The 
channel can vary with respect to either the strength of each active coefficient, the position of each active 
coefficient, or both. The least squares (LS) method is used to detect the position of the active coefficient in 
the unknown channel and the NLMS algorithm works out the strength of the active weights. Channels that 
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have a time-varying nature require a window which must adjust according to the recent channel. There are 
several types of windows that can be used to track the nonstationary coefficients. The exponential window is 
used in this paper as it has the advantage that more importance is placed on the most recent samples [8]. 

2. The Constrained Minimization Criterion of Conventional NLMS Algorithm 
The NLMS algorithm is built around the transversal filter in which the filter coefficients or weights are 

updated at p+1 iteration with respect to the squared Euclidean norm of the input vector ( )x p at iteration p. 
We assume the transversal filter as a finite impulse response (FIR) model wherein the impulse response 
sequence is defined as 0w called an R by 1 optimal weight vector. Thus, the measured output of the FIR 
model is expressed as follows [1]:   

 ( ) ( ) ( )d i y i iη= +  (1) 
Where 0( ) x wiy i = ,  is a 1 by N input vector, and ( )iη is noise measurement at time instant i. The value of N 
is much larger than the value of R the impulse response sequence of the FIR model. 

The conventional NLMS algorithm is a renowned adaptive filtering algorithm. The algorithm is derived 
from the following constrained minimization criterion: 

 2
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Where wi  is an estimated weight vector at time instant i. 
The weight update formula of the conventional NLMS algorithm is derived from the constraint 

minimization criterion by using the method of Lagrange multiplier [9]. 
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Where  1( ) ( ) x wi ie i d i −= −   and (.)T  indicates the transpose operation. 

3. The Proposed NLMS Algorithm for Nonstationary Channel 

3.1. The proposed minimization criterion and update formula 
We propose an improved minimization criterion for the NLMS algorithm which reuses past n weight 

vectors, as follows: 
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Using the method of Lagrange multiplier, we rewrite the minimization criterion (4) as follows: 
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Where ( ) ( ) i ig i d i= − x w and λ is a Lagrange multiplier. By using the differential relationships of  
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Substituting (8) into (7) we get, 
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By substituting (11) into (8), the proposed NLMS algorithm becomes: 
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We can write this as: 
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When ρ is one, the proposed NLMS algorithm simply becomes as follows: 
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Comparing the conventional NLMS algorithm (3) with the weight update formula using adaptive 
learning rate (15), we find that the proposed algorithm is composed of the averaged past n weight vectors 
that need additional calculations. As the past weight vectors increases the number of calculations also 
increases but the additional calculations are not numerically complex and can be performed simply by 
addition and division operations. It can be seen that, when n=1, the proposed NLMS algorithm including the 
computational complexity, is identical to the conventional NLMS. 

3.2. Modeling of nonstationary channel  
There are various ways in which the nonstationary or time-varying channel can be modelled. The 

channel can vary with respect to either the strength of each active weight, the position of each active weight, 
or both. The variation of the strength of the known channel taps is one approach for modelling a 
nonstationary condition. We have used random walk model to incorporate nonstationary channel. The 
random walk theory is defined as following: 

 1 * _ *w wk k random number δσ+ =∑  (16) 

Where * denotes multiplication and wk  is the response of the channel at time index k. 
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here ,i kδ  is zero mean, with variance 2
δσ  (measures the speed of parameter change) and independent of 

,j kδ { }i j≠ ; δ is sometimes known as a Gaussian white noise; 
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3.3. Active tap detection using exponential sliding window 
In adaptive estimation applications, the channel is characterised by a time domain impulse response. In 

order to detect a weight, a formula known as the LS activity measure is used:  
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Where d=desired signal, i=tap index and N= number of samples. 
Now in order for the tap to be determined as active (as opposed to inactive), the value of iX  must be 

above a certain minimum value called the active weight threshold condition. This is shown in the following 
threshold formula: 

  ( ) ( ) log( )i dX N N Nσ>  (20) 
Where 2

dσ is the variance of kd . 
If the value is found to be below this criterion, then it can be discarded. So in summary, the LS activity 

criterion (19), (20) works out or detects the position of the active taps in the unknown channel or echo path 
and the modified NLMS algorithm works out the strength of the active taps. 

By theory for a stationary channel, the length of the window which tracks the channel is the length of the 
number of samples. However, channels that have a time-varying nature require a window which must adjust 
to the recent channel. There are several types of windows that can be used to track the nonstationary taps. 
These can be rectangular, triangular, exponential, and such. The problem with the simple rectangular-shaped 
window is that it allows the least recent samples to have an equivalent rating to the most recent. The problem 
with triangular window tracking technique is that it assumes that the nature of the channel has a linear 
relation with respect to the past samples. Hence we have chosen exponential window which has the 
advantage of more importance being placed on the most recent samples. The equivalent equations to (19), 
(20) for the exponential sliding window approach are: 
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where β  is the exponential factor and obeys the limit of 0 1β< < . The smaller the size of β  is 
equivalent to a smaller effective window length. This means that more importance to the more recent 
samples will be achieved. In contrast, if the exponential factor β  is large, the effective window length will 
be larger and importance to recent samples will be less. 

4. Results 
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In this section, the simulation results of the proposed algorithm (13) are compared with the conventional 
NLMS algorithm (3) for nonstationary channels. The channel is assumed as FIR model with channel length 
of 36, i.e., R is 36, and three active weights are chosen, at the 4th weight, the strength is 1; at the 15th weight, 
the strength is –2; and at the 26th weight, the strength is 3. The input and disturbance signals used are 
random and of length 2000 with zero mean white Gaussian signals and a variance of 1.0. 

In Fig. 1, Fig. 2 and Fig. 3 the MSE of proposed NLMS algorithm for various values of ρ  are shown at 
various samples. The results show that as the adaptive learning rate decreases the convergence rate increases. 
It can be seen in Fig 4 and Fig 5, that the improved NLMS with active tap detection is capable of finding the 
position of the nonzero weights of the channel and determining the strengths for each of these coefficients. 
The value of ρ is kept as one for these calculations. 

0 500 1000 1500 2000
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Number of samples

M
ea

n 
Sq

ua
re

 E
rr

or

 

Fig. 1: MSE  of proposed NLMS algorithm  with ρ =1 for various input samples 
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Fig. 2: MSE  of proposed NLMS algorithm with ρ =0.1 for various input samples 

278



0 500 1000 1500 2000
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Number of samples

M
ea

n 
Sq

ua
re

 E
rr

or

 

Fig. 3: MSE  of proposed NLMS algorithm with ρ =0.01 for various input samples 

 

Fig. 4: Detection of actual active taps in nonstationary channel 

 

Fig. 5: Detection of active taps using proposed NLMS algorithm in nonstationary channel 
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