
 A Systematic Method For Securing Memory Modules By Using
Cryptographic Co-Processor

Ashutosh Singh and Nitesh Keswani +

Tata Consultancy Services

Abstract. Security and privacy are community-derived—one cannot hope to be secure even if one person
on the network does not take the same defensive measures that one does. If everyone is secure and every
computer ‘trusts’ every other machine, there is little reason to be afraid of a malicious hack or attack.
This is a content-protection concept that has spawned from the belief that the PC, as it currently stands, is not
architecturally equipped to protect a user from the pitfalls and challenges that an all-pervasive network such
as the Internet poses. A drastic change in the PC hardware is not feasible due largely to economic reasons.
This paper hopes to introduce a minimal change that will serve the dual purpose of granting a computer user
security, even as it maintains backward compatibility with existing applications. These changes will be
reflected in the key components of the central processor, a motherboard chip (cryptographic coprocessor),
input and output devices. It will not be a separate operating system; rather, it will be based on low-level
changes to the OS kernel itself. Secondly, it is meant as an enforcer of security measures— measures that
will either be defined by an end user or a content generator.

Keywords: cryptographic co-processor, gatekeeper, memory module, boot module, virtual memory
module.

1. Introduction
This concept is meant to cultivate a computing environment, termed as ‘trusted space’ [5,6], which a user

can rely on for security and privacy. At the heart of the system lies a secure cryptographic co-processor, that
is, a tamper-resistant embedded smart card, which contains unique keys and a variety of cipher
implementations. It thus acts as a unique identifier of a particular system and is the base on which security
measures are implemented. Additional changes made to the CPU will allow the central processor to run in a
special mode. Finally, to enable secure communication over a motherboard’s data buses, the chip too will
have to be modified. Built upon this hardware foundation and extending its functionality is a tiny piece of
software termed the Nexus. It represents a change in the kernel of the operating system and takes the form of
an independent micro-kernel[10]. The Nexus is run in an ultra-privileged mode of the CPU where certain
areas of memory are strictly reserved for it and are restricted to other, potentially malicious, pieces of code.
This micro-kernel dictates the rudimentary security policies that the rest of the system must follow.

Under the scheme, a Nexus can be changed, thus changing the security parameters and guidelines. These
rudimentary policies can be changed by using a different Nexus. The Nexus is the manager of trusted
memory and an arbitrator of access to the cryptographic co-processor[3,8]. When such a PC is booted for the
first time, an inventory of the system hardware will be taken and authenticated. If a part of the hardware is
later changed or replaced, the system will have to be re-authenticated via a central authority. Assuming that
the system’s hardware is recognised as legal, the Nexus is then loaded in an encrypted state into the restricted
memory space. It will then reside there as long as the system is up, all the while dictating the system’s
security policies and ensuring that applications do not trespass into restricted memory or file systems. It will
not be possible for any software to modify the Nexus or subvert the policies laid down by it.

+ Corresponding author. Tel.: + 033-24912335.
 E-mail address: keswani.nitesh3@gmail.com.

263

2012 International Conference on Information and Network Technology (ICINT 2012)
IPCSIT vol. 37 (2012) © (2012) IACSIT Press, Singapore

The Nexus is thus protected by the hardware, while it protects the software that forms the applications
and data. While the Nexus maintains a low profile, managerial stance, entities known as Trusted Agents (TA)
[6,7] do the legwork of interacting with the user. A TA can either be a – manufacturer’s trusted application
or an add-on to an existing program, imparting security awareness to it.

Although existing applications will run on such a system, they will not be able to use the security
features without TAs. To better comprehend the relation between a Nexus and TAs, consider the analogy of
a language. If the Nexus defines the rules of grammar for the language, the TA uses those rules to construct
sentences as a means of communicating securely with other systems and users.

1.1. Spheres of trust
The Nexus and TAs together provide trusted data storage, encryption services for applications and

facilities to enable hardware and software to authenticate themselves and each other. Central to the this
concept are ‘Spheres of trust’[5,7], wherein a user can not only define which program to trust but can also
ask it to use only a certain set of data. Its like trusting one’s doctor with very sensitive health information. It
is unlikely, however, to share with him the particulars of one’s bank account—details that the broker is
aware of. The broker, in turn, is in the dark about the details of one’s health.

Thus, the trust one lends to the physician does not extend into the financial life, just as broker’s ‘sphere
of trust’ does not encompass information on health. Similarly, such a system divides user data into separate
spheres or vaults. Each trusted application is granted access to either a section or an entire vault.

1.2. Information security
A Using the Nexus and the supporting hardware, such a system is cryptographically verifiable to the user

and to other computers or services. The system can ascertain that other computers are trustworthy before
engaging them in a transaction involving sensitive data. This is termed as attestation and it forms a
cornerstone of successful security and privacy measures. Take the instance of a bank operation. Banking
software has to be highly trusted and moreover, it must be ensured that the computer dealing with it does
indeed belongs to us and not to some malicious party masquerading under one’s identity. The hardware
should thus trust the banking software and vice-versa. This virtual handshake to exchange and verify
credentials is made possible by attestation. Once attestation is done, exchange of data takes place. It is
important that data is only accessible to applications that have been identified as trusted. Once our personal
data is transmitted to the bank, we could so arrange the transaction that only particular software can read
such information.

Such control is made possible by a mechanism called sealed storage[9]. Sealed storage is done by
encryption or decryption techniques using the cryptographic co-processor. To seal a piece of data, it is
appended with the hash of the system’s Nexus identifier (a 160-bit number). It is then encrypted with a
private key—a secret key unique to each system. When a sealed data is given to such a system, the
cryptographic coprocessor attempts to decrypt it using its platform-specific private key. If successful, the
hashed Nexus identifier is extracted and decrypted to determine which Nexus is permitted to receive the data.
If the Nexus that currently resides on the computer is the same as the one that was present while the data was
sealed, the data is unsealed and read.
 Two things emerge from this: 1. You cannot take a sealed file and transfer it to another machine to be
unsealed there since the platform-specific key will change and the process will fail at the first step. Such a
measure is essential if you wish to store sensitive data on a non-trusted hard disk or over a network. For this
reason there will be software extensions that will implement one of three migration policies: (a) Migration is
entirely prevented by default setting, (b) Migration is permitted upon entry of a valid password, (c)
Migration is allowed with the consent of a third party, for instance, permission is required while
downloading an MP3 file from a music company. 2. The same Nexus must be present while sealing and
unsealing the data. If you have changed the micro-kernel after encrypting a file, you will have to go back to
the older one to read the file. Thus, applications can only decrypt sealed data if they run on the same
hardware and under an identical software environment (as dictated by the Nexus) under which the data was
sealed. This ensures that under a trusted Nexus, an application can decrypt and process the data but cannot

264

subvert a TA’s policy. If you’re not running under a trusted Nexus, you could run software that undermines
the policy set by a TA, but the application will no longer be able to decrypt the sealed data since the Nexus
has changed. The concept does not require user information for authentication purposes; instead, it secures
the hardware and software environment. The Nexus identifier is not unique to a system, since it is likely that
the majority of people will use the same Nexus. The only identifier unique to the system will thus belong to
the cryptographic coprocessor [8].

1.3. Proposed method
Now we require a systematic method that allows for a secure memory architecture where the memory

module is not directly accessible. In accordance with today’s needs , a systematic method has been described
which substantially eliminate or reduce disadvantages with previous systems and methods for securing the
memory modules(and the system).A secured memory module including a memory module, a virtual
memory module, and a gatekeeper (hereafter identified as cryptographic coprocessor) allows for a memory
module that is accessible via the virtual memory module and therefore not accessible where access of the
memory module requires the authentication of the key by the gatekeeper.
In accordance with one aspect of the present disclosure an information handling system is provided. The
information handling system includes a processor, a memory module, a virtual memory module, a boot
module and a cryptographic coprocessor. The boot module accepts a key and one or more requests for the
memory module and provides the requests and the key to the virtual memory module. The virtual memory
module is externally accessible by the boot modules and accepts the key and one or more requests from boot
module[1,4]. The virtual memory module transmits the one or more requests and the key from the boot
module to the cryptographic coprocessor. The cryptographic coprocessor receives the key from the virtual
memory module and authenticates the key and does not allow modification of the memory module if the key
is not authenticated.

More specifically in one embodiment, a stored key is stored in programmatically inaccessible location
within either the cryptographic coprocessor or the memory module .When the cryptographic coprocessor
receives the request and the key from the boot module via the virtual memory module, it retrieves the stored
key from the programmatically inaccessible location and compares the key provided by the boot module with
the stored key. If the key provided by the boot module and the stored key are the same, then the key is
authenticated and the request is processed within its dedicated memory. If the execution of the request
exceeds permitted memory or processor utilization then the request is denied. If the request is found to be
safe then it is dispatched to the memory module and processed. The present disclosure provides a number of
technical advantages. One important technical advantage is the inaccessibility of the memory module . With
the addition of the cryptographic coprocessor, the boot module no longer operates as the guardian for the
memory module and the boot module no longer writes directly to the memory module. Instead, the boot
module writes to the virtual memory module believing that the virtual memory module is the memory
module. Read and write requests are only executed in the memory module by the cryptographic coprocessor
if the key provided when accessing the boot module matches the key stored in the programmatically
inaccessible location. Therefore, the memory module is not directly accessible by the boot module and
therefore not accessible to any outside users and is difficult to hack for unauthorized changes. In addition,
since the key is stored in a programmatically inaccessible location within either the cryptographic
coprocessor or the memory module, neither of which are directly accessible, the key is not accessible to any
outside users and cannot be easily retrieved by an unauthorized user in order to make unauthorized changes
to the memory module.

Another important technical advantage is that the secured memory module architecture functions with
existing information handling system components. The memory module[2], cryptographic coprocessor, and
virtual memory module are designed so as to not require any changes to the other components of the
information handling system[1,2]. The virtual memory module is designed so that it appears to the boot
module as the memory module and the boot module does not have to be redesigned in order to communicate
requests to the virtual memory module instead of the memory module. Therefore, when the boot module

265

accesses the virtual memory module, the boot module believes that it is interacting with the actual memory
module and not the virtual memory module.

A significant technical advantage is that even if an authorised user inadvertently or deliberately requests
execution of malicious code, the system denies the request. Therefore the system is equipped even against
intentional sabotage.

Fig. 1: Block Diagram

FIG. 1[modified from 1] illustrates a block diagram of a system including information handling system.
In the example embodiment, information handling system includes respective software components and
hardware components, such as processor, memory, input/output ports, access agent, boot module, virtual
memory module, memory module, cryptographic coprocessor with its dedicated memory and those
components work together via bus to provide the desired functionality. Bus provides a communication link
between the above components and is typically used as a control, diagnostic or power management bus with
interconnects and transfers of information between the various components of information handling system.
The various hardware and software components may also be referred to as processing resources. Information
handling system may be a personal computer, a portable computer, a personal digital assistant, a server, or
any other appropriate information handling device.

Network may be LAN, a WAN, the Internet, intranets, or any other type of communication network.
Memory module is a memory device storing various information regarding information handling system.
The memory module stores information such as boot order and system configurations for information
handling system. Memory module may be a non-volatile memory such as CMOS or flash memory or any
appropriate type of memory module like RAM.

Gatekeeper is a cryptographic coprocessor that regulates and controls access to memory module.
Because gatekeeper regulates access to memory module, only gatekeeper can access and modify memory
module. It also has a dedicated memory which is isolated (inaccessible) from rest of the system. The key is a
symmetric key or password that is required by gatekeeper for access to memory module. Secure location is a
programmatically inaccessible location that is accessible only to gatekeeper. Virtual memory module is a
hardware component that appears as actual memory module to all components of information handling
system except gatekeeper and memory module.

FIG. 2 (below) illustrates a flow diagram of an example method for securing access to memory modules.
A user accesses information handling system[1] to control it while management console remotely accesses
information handling system to allow for remote control and operation of information handling system.
When the user accesses information handling system and boot module, the user generally desires to provide a
request to memory module. In previous systems, when the boot module received a request from the user, the

266

module would execute the request in the memory module often without verifying the validity of the request
or the user.

Fig. 2: Flow Diagram

267

In the present disclosure, when boot module receives the request, it determines if the received request is
a request to write to memory module or to read from memory module. If the request is a write request, then
the boot module requests from the user the key. As previously described, the key is a symmetric password or
secret code that is required by gatekeeper (cryptographic co-processor) in order to access memory module. In
order to process the request within memory module, gatekeeper must first authenticate the key provided by
the user. To authenticate the provided key, the cryptographic co-processor compares the provided key with a
stored key stored in secure location. Hashes of the key may also be utilized instead of the actual key.
Creating and retrieving hashes of the provided key and stored key allows for a greater level of security.

If the provided matches the stored key, then the provided key and accordingly the user has been properly
authenticated and gatekeeper assumes that user is an authorized user of information handling system. The
Cryptographic co-processor has a dedicated memory in which it test-runs the execute request for malicious
behaviour and it denies the request which exhibit malicious behaviour. If the provided key does not match
the stored key, then the gatekeeper denies the request and does not execute the request within memory
module. If the request is a read request the gatekeeper determines whether the key is needed for a read of the
memory module. If a key is required for a read request, the gatekeeper requests the user for the key.

If gatekeeper receives one or more simultaneous requests, whether read, write or combination, from boot
module at same time it serializes the requests first in, first out sequence. In other embodiments, an
importance or urgency value may be associated with each request and therefore gatekeeper processes the
requests from most important or urgent to least important or urgent.

2. Conclusion
Therefore a method has been proposed to defend a system against any threat. Not only does it prevent

unauthorised access but also the execution of malicious request even if an authorized user makes such a
request. Hence the memory module is protected through the cryptographic co-processor which makes sure
that only safe and authorized request are provided access to the memory module.

3. References
[1] US Patent no. US 7308102 B2 - Douglas M. Anson et al., December 2007.

[2] US patent no. US 5844986 – Dl Davis, December 1998.

[3] US Patent 2002/0099950 A1 – Smith, July 2002.

[4] US Patent 2005/0033970 A1 – Douglas M. Anson et al, 2005.

[5] Trusted Computing, Digital Rights Management, and the Fight for Copyright Control on Your Computer, Fall 2003,
2003 UCLA J. L. Tech. 8 by Ryan Roemer.

[6] Security & Privacy, IEEE, Felten, E.W.; Princeton Univ., NJ, USA, Issue Date: May-June 2003
Volume: 1 Issue: 3 On page(s): 60 – 62.

[7] Flexible OS support and applications for trusted computing, Tal Garfinkel, Mendel Rosenblum, Dan Boneh.
Proceeding HOTOS'03 Proceedings of the 9th conference on Hot Topics in Operating Systems - Volume 9.

[8] FPGA implementation of RSA public-key cryptographic coprocessor, Hani, M.K.; Tan Siang Lin; Shaikh-Husin,
N.; TENCON 2000. Proceedings On page(s): 6 - 11 vol.3.

[9] Operating System Security: Microsoft Palladium for Dr. Chris Taylor by Karl Heins, February 3, 2003.

[10] Certifying program execution with secure processors, Benjie Chen, Robert Morris, Proceedings of the 9th
conference on Hot Topics in Operating Systems - Volume 9 Pages 23 – 23.

268

