
Node Circulation in Cluster Computing Using ORCS

S.M.Krishna Ganesh +

Department of Computer Science and Engineering, Raja College of Engineering and Technology, Madurai

Abstract. The system of cluster computing aims in distributing the process among the CPU to increase
speed of processing. The server in the cluster performs the monitoring and load balancing of the clients. Here
we aim to schedule the load of the client using a process scheduling node allocation based on the client
capability, in a fashion that resembles a single node system. The algorithm can be implemented in any system
that supports process migration. The objective is to improve the efficiency of load balancing and scalability
in the cluster environment. The paper measures the performance of the algorithm on a MOSIX GRID with
maximum of 60 nodes. The paper presented an on-line, resource sharing Algorithm for Node allocations in a
cluster and its performance. First, we showed an algorithm for Excess allocations in which nodes, including
unclaimed nodes, are proportionally allocated to users. Since in our model nodes are not shared by different
users, the algorithm was extended to achieve a Temporal Node allocation by node circulations. In another
extension, node allocations were based on a hierarchical tree. We implemented the algorithm on a running
MOSIX Grid and measured its performance on a 60 node shared cluster. We tested cases with equal
proportions, non-equal proportions, with node circulations, a hierarchical setup and in a flexible
configuration.

Keywords: cluster computing, clustering, load balancing, monitoring, process scheduling.

1. Introduction
The cluster is a collection of interconnected stand-alone computers working together as a single,

integrated computing resource consisting of many of the same or similar types of machine. A Cluster is a
group of terminals or workstation attached to common control unit. We need to create a cluster with
maximum number of nodes. It takes the advantage of non-local resources - using available computer
resources on a wide area network. Overcoming memory constrain-single computers have very finite memory
resources for large problems, using the memories of multiple computers may overcome this obstacle. The
main feature in cluster environment with automatic resource discovery, preemptive process migration, and a
priority scheme among migration in maximizing memory and/or disk performance among the cluster nodes
we choose many workstations with peer architecture. Briefly, resource discovery is performed by an on-line
information dissemination algorithm that maintains a distributed bulletin boarding order to provide each
node with the latest information about the availability and the state of grid-wide resources.

2. Optimal Resource Constraint Scheduling(ORCS)
In computer science, a scheduling algorithm is the method by which threads or processes are given

access to system resources, usually processor time. This is usually done to load balance a system effectively.
The need for a scheduling algorithm arises from the requirement for most modern systems to perform
multitasking, or execute more than one process at a time. Scheduling algorithms are generally only used in a
time slice multiplexing. The reason is that in order to effectively load balance a system, the kernel must be
able to suspend execution of threads forcibly in order to begin execution of the next thread. The proposed
algorithm used may be as simple as Prior round-robin which is shown in figure 2. In which each process is
given equal time (for instance 1 ms, usually between 1 ms and 100 ms) in a cycling list. So, process A
executes for 1 ms, then process B, then process C, then back to process A. More advanced algorithms take

+ Corresponding author. Tel.: + +918124465349.
 E-mail address: krishnaganeshsm@gmail.com.

228

2012 International Conference on Information and Network Technology (ICINT 2012)
IPCSIT vol. 37 (2012) © (2012) IACSIT Press, Singapore

into accoun
than other p
proper func
affinity is c
more slowly

nt process pri
processes. It
ctioning of th
considered to
y. This gener

iority, or the
t should be n
he system, a
o increase ov
rally improv

 F

CLIENT

CLIENT

CLIENT

Fig

importance
noted that th
and so can b
verall system
es performan

1. In
2. L
3. T
4. P
5.Si
6. M
7. T

Fig. 1: O

Fig. 2: ORC S

Fig. 3: Proces

CLIE

CLIE

CLIE

g. 4: The Load

of the proce
he kernel alw
be said to ha
m performan
nce by reduc
nitially Si = M

Let ri be the no
The Ci be the c
Pi be the no of
i/Ci * 100 =M

Max (Mi) is al
The Pi exec: =
ORC Algorith

Scheduling ba

ss Preemption

ENT

ENT

ENT

NETWORK

Time
Quantum

d Balancing sc

ess. This allo
ways uses w
ave infinite p
nce, even if
cing cache thr
Max_100
o of cluster no
capability of r
f process on ri
Mi ↔{M1,M2
lotted with Pi

= Σ Pi€ ri → M
hm Steps

asic frame wor

n with priority

SERVER

ACTIVE
LOAD

BALANCED

K

m

cheme in clus

ows some pro
whatever reso

priority. In S
it may caus
rashing.

odes
ri
i
2,……Mn}
i

M

rk

y.

OCR
Scheduling

ster

ocesses to us
ources it nee
SMP system
e a process

se more time
ds to ensure

ms, processor
itself to run

e
e
r
n

229

Let Si be the server RAM with maximum memory which is utilized by the ri number of cluster nodes
effectively. The capacity of the nodes be Ci and is taken by dividing the RAM capacity and is utilized
effectively. The maximum percentage is done with highest priority. Based on which the process are executed
correspondingly to improve the scalability and load balancing. The simplest best-effort scheduling
algorithms are round-robin, fair queuing (a max-min fair scheduling algorithm), proportionally fair
scheduling and maximum throughput. If differentiated or guaranteed quality of service is offered, as opposed
to best-effort communication, we use optimal resource constraint scheduling to improve the load balancing
and scalability. Figure 3 below shows the OCR scheduling based on the time quantum compilation and pre-
emption of process based on the priority. The main objective is to schedule the process dynamically among
the clients by the server to improve the scalability and load sharing which could minimize the overhead. A
scheduling algorithm which repeatedly runs through a list of users, giving each user the opportunity to use
the central processing unit in succession. The existing scheduling may not be desirable if the size of the jobs
or tasks are strongly varying. A process that produces large jobs would be favored over other processes. This
problem may be solved by time sharing i.e. by giving each job a time slot or quantum (its allowance of CPU
time), and interrupt the job if it is not completed by then. The job is resumed next time a time slot is assigned
to that process. Thus the ORC improves the efficiency. Example: The time slot could be 100 milliseconds. If
a job1 takes a total time of 250ms to complete, the priority scheduler will suspend the job after 100ms and
give other jobs their time on the CPU. Once the other jobs have had their equal share (100ms each), job1 will
get another allocation of CPU time and the cycle will repeat. This process continues until the job finishes and
needs no more time on the CPU

2.1. Performance analysis of ORC scheduling
The process scheduling in cluster environment includes the round robin scheduling for the process to be

distributed among the clients and the corresponding order is queued for execution. Thus the order of
execution increases the performance of the load effectively shared across the network and the achieve the
scalability. The tables below show the average waiting and turnaround time of the number of process in the
total number of system executed correspondingly based on ORC algorithm. We consider a total of 5 systems
and the maximum of 25jobs executed and minimal WT=10 and TT= 30 with high degree of accuracy. The
ultimate aim is to improve the efficiency of the algorithm effectively and perform load balancing among the
shared cluster nodes. The process in each processor is executed with high speed and the load of the server is
distributed across the client effectively. The load balancing among the cluster nodes are distributed by the
scheduling to reduce server load and improve the scalability of the systems effectively. This scheduling of
the jobs to be run on the server is performed effectively. With improved efficiency and performance as
shown in graph.The Following tables indicate the calculation of the average waiting and turnaround time.

Tables. 1: Calculating the Average waiting time and Turnaround time

NODES SYS1 SYS2 SYS3 SYS4 SYS5

AVG WT 3 6 14 20 22

AVG TT 21 32 43 54 65

SYSTEM 1: AVG WT= 13 AVG TT=23

NODES SYS1 SYS2 SYS3 SYS4 SYS5

AVG WT 25 35 40 45 55

AVG TT 21 42 54 66 83

230

SYSTEM 2: AVG WT= 40 AVG TT=53

NODES SYS1 SYS2 SYS3 SYS4 SYS5

AVG WT 24 44 65 85 107

AVG TT 32 64 87 106 141

SYSTEM 3: AVG WT=65 AVG TT=76

NODES SYS1 SYS2 SYS3 SYS4 SYS5

AVG WT 32 63 96 129 159

AVG TT 44 78 110 137 171

SYSTEM 4: AVG WT=96 AVG TT=102

NODES SYS1 SYS2 SYS3 SYS4 SYS5

AVG WT 43 77 121 155 204

AVG TT 56 103 130 167 204

SYSTEM 5: AVG WT= 112 AVG TT=132

NODES SYS1 SYS2 SYS3 SYS4 SYS5

AVG WT 56 112 151 215 261

AVG TT 69 129 179 239 284

SYSTEM 6: AVG WT=159 AVG TT=178

2.2. Experimental study
The experimental study here shows the process speed of execution and the corresponding turnaround

time with high degree of efficiency. The Figure 5 shows the graph showing the process and the time of
processing which indicates the speed of execution correspondingly. Table1: shows the corresponding waiting
time and turnaround time of the process executed. By implementing this algorithm number of process on the
node are scheduled effectively. This scheduling helps to minimize the overload in the server and we increase
the number of cluster nodes and their process being executed. The graph displays the increase in node and
the corresponding process with increased performance. The graph displays comparison with FCFS, SJF and
Round Robin Scheduling as follows

231

Fig. 5: Graph showing the Process Vs Turnaround Fig. 6: Graph showing the Process Vs Waiting Time of
time of processing processing

Table. 2: Time showing the Waiting time Table. 3: Time showing turnaround running process
of the running process

PROCESS FCFS SJF RR

5 27 25 23

10 50 57 53

15 92 85 76

 20 128 119 102

25 167 153 132

30 212 192 170

PROCESS FCFS SJF RR

5 17 15 13

10 47 44 40

15 80 72 65

20 115 106 96

25 152 139 112

30 196 176 159

3. Conclusion
The paper presented an on-line, resource sharing Algorithm for Node allocations in a cluster and its

performance. First, we showed an algorithm for Excess allocations in which nodes, including unclaimed
nodes, are proportionally allocated to users. Since in our model nodes are not shared by different users, the
algorithm was extended to achieve a Temporal Node allocation by node circulations. In another extension,
node allocations were based on a hierarchical tree. We implemented the algorithm on a running MOSIX Grid
and measured its performance on a 60 node shared cluster. We tested cases with equal proportions, non-
equal proportions, with node circulations, a hierarchical setup and in a flexible configuration. The result
shows the performance evaluation of the running process and CPU utilization the work presented in this
paper can be extended in several ways. First, our algorithm can be generalized to handle different resources,
such as nodes with several CPUs (SMPs), nodes with different CPU speeds or different amounts of memory.
Another possible extension is to support time-sharing of nodes.

4. Acknowledgements
First of all i thank the almighty for giving me the knowledge and courage to complete the research work

successfully. I like to thank the anonymous reviewers for their insightful remarks and valuable suggestions,

WAITING TIME

0
15
30
45
60
75
90

105
120
135
150
165
180
195

5 10 15 20 25 30

No of Process

Ti
m

e

FCFS

SJF

OCR

0
20
40
60
80

100
120
140
160
180
200
220

5 10 15 20 25 30

FCFS
SJF
OCR

232

which were very helpful in improving the article. I express my gratitude to the respected
PMJF.Lion.G.Nagarajan, Chairman, Raja College of Engineering & Technology, Madurai for allowing me
to do the research work internally. Also i acknowledge the support provided by Dr.V.Sekaran M.E,Ph.D
Principal, Raja College of Engineering & Technology,Madurai. I thank my parents, friends and collegues
for their support and encouragement.

5. References
[1] A. C. Arpaci-Dusseau and D. E. Culler, “Extending Proportional-Share Scheduling to a Network of

Workstations”,PDPTA, 1997.

[2] Barak, A. Shiloh and L. Amar, “An Organizational Grid of Federated MOSIX Clusters”, CCGrid- 05, Cardiff ,
2005.

[3] J.F.C.M de Jongh, ”Share Scheduling in Distributed Systems”, PhD Thesis, Delft Tech. university, 2002.

[4] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield, P. Barham and R. Neugebauer, “Xen and
the Art of Virtualization”, OSDI, 2003.

[5] S.D. Kleban and S.H. Clearwater, ”Fair Share on HighPerformance Computing Systems: What Does Fair Really
Mean?” CCGrid-03, 2003.

[6] K. Lai, L. Rasmusson, E. Adar, S. Sorkin, L. Zhang and B. A. Huberman, “Tycoon: an Implementation of a
Distributed Market-Based Resource Allocation System”,TR arXiv:cs.DC/0412038, HP Labs, 2004.

[7] Jemal H. Abawajy and S. P. Dandamudi, “Distributed Hierarchical Co-ordination of Workstation Clusters,”IEEE
PARELEC’2000, Trois-Rivierres, Quebec, Canada.

[8] S. P. Dandamudi and T.K. Thyagaraj, "A Hierarchical Processor Scheduling Policy for Distributed-Memory
Multiprocessor Systems," In Proc. of HiPC'97, December 18-21, 1997, Bangalore, India.

[9] D. E. Bernholdt et. all. A component architecture for high-performance scientific computing. to appear in Intl. J.
High-Performance Computing Applications.

[10] E. Gabriel et all. Open MPI: Goals, concept, and design of a next generation mpi implementation. In 11th European
PVM/MPI Users’ Group Meeting, 2004.

233

