A Robust Watermarking Algorithm for Image Authentication

M.V.S.S.BABU +
Dept of Electronics and Communication Engineering, Karunya University

Abstract. The algorithm of discrete wavelet transform and Hankel transform combined is developed to achieve the integrity authentication of color image contents through embedding watermarking. Firstly, a new watermarking image is generated with the XOR between the original binary watermarking and the image which is processed with Hankel transform. When the watermark is embedded, the original image color is converted first and the brightness component is decomposed into three discrete wavelets. Then, the low frequency approximation sub-image of third-level is extracted, and its least significant bit is set 0. Finally, the new watermark is embedded into its least significant bit. Through comparing the pixels of original watermarking image with that of the extracted watermarking image, it can be determined whether the watermarking image has been tampered, and the tampered area of the original color image is located. The results of simulation experiment shows that the algorithm has the strong capabilities of detection and location and it also can keep the original image quality well.

Keywords: wavelet transform, hankel transform, digital image watermarking, image authentication.

1. Introduction

1.1. Overview
In the last few years, fragile watermarking has been widely used to authentication and content integrity verification. The technique modify the host image in order to insert the pattern but the permanent embedding distortion is intolerable for the applications that requires high quality images such as medical and military images. The most adequate solution for this problem is robust watermarking algorithm. The robust watermarking not only provides authentication and tamper proofing but also can recover the original image from the suspected image. After the verification process if the transmitted image is deemed to be authentic the doctor reconstitutes the original image and uses it in its diagnosis avoiding all risk of modification. An intriguing feature of the robust watermark embedding is the reversibility, that is one can remove the embedded image to restore the original image. From the information hiding point of view, the robust image embedding hides some information in the digital image in such a way that an authorized party could decode the hidden information and also restore the image to its original state.

1.2. Hankel matrix
The Hankel matrix \(H \) of the integer sequence \(\{a,b,c,d,\ldots\} \) is the infinite matrix

\[
A = \begin{cases}
 a & b & c & d & e & \ldots \\
 b & c & d & e & f & \ldots \\
 c & d & e & f & g & \ldots \\
 d & e & f & g & h & \ldots \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{cases}
\]

with elements \(\{a,b,c,d,\ldots\} \).

+ Corresponding author. Tel.: + 91-9789406090.
E-mail address: mvssudheerbabu08@gmail.com.
If the ij element of A is denoted A_{ij}, then we have $A_{ij} = A_{i-1,j+1}$. The Hankel matrix is closely related to the Toeplitz matrix (a Hankel matrix is an upside-down Toeplitz matrix). For a special case of this matrix see Hilbert matrix.

2. Watermarking

2.1. Digital watermarking

Digital watermarking is the process of embedding information into a digital signal which may be used to verify its authenticity or the identity of its owners, in the same manner as paper bearing a watermark for visible identification. In invisible digital watermarking, information is added as digital data to audio, picture, or video, but it cannot be perceived as such. The watermark may be intended for widespread use and thus, is made easy to retrieve or, it may be a form of steganography, where a party communicates a secret message embedded in the digital signal. In either case, as in visible watermarking, the objective is to attach ownership or other descriptive information to the signal in a way that is difficult to remove. It also is possible to use hidden embedded information as a means of covert communication between individuals.

A digital watermarking method is said to be of quantization type if the marked signal is obtained by quantization. Quantization watermarks suffer from low robustness, but have a high information capacity due to rejection of host interference.

![Watermarking Procedure](image)

2.2. General requirements

A digital watermark is called robust with respect to transformations if the embedded information may be detected reliably from the marked signal, even if degraded by any number of transformations. Typical image degradations are JPEG compression; rotation, cropping, additive noise, and quantization for video content, temporal modifications and MPEG compression often are added to this list. A digital watermark is called imperceptible if the watermarked content is perceptually equivalent to the original, un-watermarked content. In general, it is easy to create robust watermarks -or- imperceptible watermarks, but the creation of robust and imperceptible watermarks has proven to be quite challenging. Robust imperceptible watermarks have been proposed as tool for the protection of digital content, for example as an embedded no-copy-allowed flag in professional video content.

2.3. Robustness

A digital watermark is called fragile if it fails to be detectable after the slightest modification. Fragile watermarks are commonly used for tamper detection (integrity proof). Modifications to an original work that clearly are noticeable commonly are not referred to as watermarks, but as generalized barcodes A digital watermark is called semi-fragile if it resists benign transformations, but fails detection after malignant transformations. Semi-fragile watermarks commonly are used to detect malignant transformations. A digital watermark is called robust if it resists a designated class of transformations. Robust watermarks may be used in copy protection applications to carry copy and no access control information.

2.4. Perceptibility
A digital watermark is called imperceptible if the original cover signal and the marked signal are (close to) perceptually indistinguishable. A digital Watermark is called perceptible if its presence in the marked signal is noticeable, but non-intrusive.

2.5. Capacity
The length of the embedded message determines two different main classes of digital watermarking schemes: The message is conceptually zero-bit long and the system is designed in order to detect the presence or the absence of the watermark in the marked object. This kind of watermarking scheme is usually referred to as zero-bit or presence watermarking schemes. Sometimes, this type of watermarking scheme is called 1-bit watermark, because a 1 denotes the presence (and a 0 the absence) of a watermark.

2.6. Blind
Some of the conventional watermarking schemes require the help of an original image to retrieve the embedded watermark. However, the reversible watermarking can recover the original image from the watermarked image directly. Therefore, the reversible watermarking is blind, which means the retrieval process doesn’t need the original image.

2.7. Higher embedding capacity
The capable size of embedding information is defined as the embedding capacity. Due to the reversible watermarking schemes having to embed the recovery information and watermark information into the original image, the required embedding capacity of the reversible watermarking schemes is much more than the conventional watermarking schemes.

The embedding capacity should not be extremely low to affect the accuracy of the retrieved watermark and the recovered image. The procedure of conventional and reversible watermarking schemes can be illustrated by using the flowcharts in the above figure. The steps of conventional watermarking and reversible watermarking are similar except there is an additional function to recover the original image from the suspected image. Therefore, the robust watermarking is especially suitable for the applications that require high quality images such as medical and military images. In addition, there are two research fields often connected with digital watermarking: data hiding and image authentication.

The purpose of data hiding is using the cover image to conceal and transmit the secret information. And the purpose of image authentication is to verify the received image whether it be tampered or not. In order to achieve the goals, the data hiding scheme should have a large embedding capacity to carry more secret information, and it has to be imperceptible to keep the secret undetectable. The image authentication schemes also require embedding some information into the protected image, and also has to keep the imperceptibility between the preprocess image and processed image. As in the definition, the goals of the robust watermarking are to protect the copyrights and can recover the original image.

The robustness, imperceptibility, high embedding capacity, high embedding capacity, readily embedding and retrieving, and blind are the basic criterions of the reversible watermarking. A reversible data hiding scheme and a reversible image authentication scheme can be also defined as the schemes which can recover the original image from the embedded image.

3. Multi-Level Decomposition of Wavelet and Hankle Transform Based Data Hiding
3.1. Multi-Level decomposition
For the information hiding algorithms (such as DFT, DCT, DWT, and so on), the secret information may be extracted by applying the exhaustive algorithm to the information intercepted when these information hiding algorithms are used to conceal the information merely. However, if the secret information is scrambled through the algorithm before it is concealed, it will become disorderly and unsystematic.

Then, when it is embedded into the information carriers, the information will be transmitted more safely. In this case, the secret information will not be identified even if it is extracted, and it will be regarded as that the extracting algorithm is wrong or the information carriers contain nothing.
In Figure 2, the original image is decomposed into four sub-images, including one low frequency sub-image LL1 with quarter pixels and three high frequency sub-images with quarter pixels: HL1 details in the Vertical direction, LH1 details in the horizontal direction and HH1 details in the diagonal direction. When the approximate sub-image LL1 is decomposed again, four lower resolution sub-image images are obtained. If the lower resolution sub-image images are decomposed repeatedly, the wavelet decomposition of digital images can be reached. The main power is contained in the lowest frequency sub-image which includes the main characteristics.

The low frequency sub-images have the capability of resisting the noises, and the high frequency sub-images are easy to be affected by the noises and they are unstable relatively. For improving the speed and security of embedding the watermarking, three-stage discrete wavelet transform is applied and LL3 is selected to be disposed. Because the low frequency sub-images contains the main power of image decomposed, it can embody the invisibility of watermarking and reduce the effect of watermarking on the original image that embeds the watermarking into the least significant digit of the third wavelet transform.

4. Watermark Embedding

4.1. Embedding procedure

The digital watermarking embedded process based on wavelet transform (DWT) is shown as Figure 3.

Step 1: A binary watermarking image is scrambled through using the Hankel matrix for several times, and the purpose is to make watermark disorderly with the times of scrambling as a key.

Step 2: The original color image is under binarization process with better threshold value chosen.

Step 3: A new watermarking image is generated through applying the XOR processing to the image from Step 1 and Step 2.

Step 4: Accordance to the RGB-YUV color space Conversion formula for original image color space conversion, the color image is converted from the RGB color space to the YUV color space.

Step 5: Apply the three discrete wavelet decomposition to the Y component (luminance component) of the YUV color space, and the lowest effective low-frequency of the third-level wavelet transform is posited 0;

Step 6: The new generated watermark is embedded into the least significant bit after Step 5 treatment.

Step 7: Apply three discrete wavelet inverse transform.

Step 8: Combine the new Y component (luminance component) with the UV components (color components).

Step 9: The image after the process of Step 8 is converted from the YUV to RGB, and a final image with the watermark generated...

4.2. Extraction of the watermark

The first stage of fragile digital watermarking extraction and detection is same, namely, the image detection is transformed by three-stage discrete wavelet and then select the part of the third level on LL3. The difference is that the latter part, it is need to extract the LSB of the third level LL3 of the image to be detected, the threshold is used to treat a given color image detection to generate a binary image, and then the generated binary image XOR the extracted LSB image, generating a watermarking image, the watermark generate anti-replacement plan at last. The tamper localization of the fragile watermarking is completed. The process part of digital watermarking extraction and detection is shown in Figure 4.
5. Results

5.1. A robust watermark embedding using hankel transform

A 512-by-512 color Lena image is taken as the input image. This image is converted binary image. Interpolation technique is applied to the input image to form the interpolated image. Interpolation is the method of determining high resolution in an image from its low resolution counterparts. Later that image was resized to 64-by-64.

![Original image](image1.png) ![Resized original binary image](image2.png) ![Secret image](image3.png)

This secret image was again converted into gray scale image and resized into 64-by-64 image it was as sown in the following figure.

![Grayscale image](image4.png) ![Generated Hankel matrix](image5.png) ![Lowest resolution image](image6.png) ![Watermark Embedded image](image7.png)
For this gray scale image the hankel transform was applied to generate a watermark image. It is as shown in fig 10. For the original image the Discrete Wavelet transform was applied and the low resolution position LL3 was selected for doing xor operation. The result of this operation gives a 64-by-64 image as shown below. Now the image was embedded with secret image that is the hankel transformed image. It also as shown in the fig 9. This Embedded low resolution image was resized to 512-by-512 image. Then it was converted into color image as shown in the figure 13.

Fig. 12: Resized Embedded grayscale image

Fig. 13: Watermarked color image

5.2. Extraction of the image

For extraction of the watermark first we select the color image. This image under goes the procedure of conversation of the RGB into YUV color method. In parallel to this process the image under goes the process of Binarization. From YUV converted image the Y component was extracted a three level discrete wavelet transform applied. Then the image was converted in to 64-by-64 sized image.

Fig. 14: Extracted Y component
Fig. 15: Extracted original image
Fig. 16: Recovered color image

From this image the low level position that is LL3 position was extracted. This was XOR-ed with Binarization output. The output of the xor operation was under goes to anti-scrambling watermark procedure. Then the tempering location was found in the original image. Finally the original image extracted and tempered location was identified. The extracted image was of size 64-by-64.

5.3. Performance measurements

Peak signal to noise ratio (PSNR). In the case of watermarking, PSNR indicates the quality of the watermarked image. Higher the PSNR, higher will be the quality. Quality of the watermarked image should be higher to the quality. Quality of the watermarked image should be higher to make the secret data invisible to attackers.

\[
\text{PSNR} = 10 \times \log \left(\frac{255^2}{\text{MSE}} \right)
\]

Where MSE is the mean square error which can be calculated by,

\[
\text{MSE} = \frac{1}{W \times H} \sum_{i=1}^{H} \sum_{j=1}^{W} (I(i,j) - I'(i,j))^2
\]

Where I is the input image and I’ is the watermarked image. W and H indicate the width and height of image. This experiment was done by using some of the images and the MSE and the Quality are tabulated as shown in table 1.

6. Conclusion

In this Paper the watermarking image is scrambled with Hankel transform before it is embedded. The watermarking image formation, the carrier image are used for generating a new watermark, and then the watermark is embedded with Hankel matrix, which can effectively hide and protect the watermarking
information from the usual malicious attacks to common image. Thus, it becomes more difficult that the attackers extract the watermark. Even if the attack is not very strong, the watermark extraction can also play a good location performance.

Table 1: Performance measurement comparison for different images

<table>
<thead>
<tr>
<th>Image</th>
<th>MSE</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peacock</td>
<td>0.4181</td>
<td>51.9178</td>
</tr>
<tr>
<td>Indian Monkey</td>
<td>0.4145</td>
<td>51.9555</td>
</tr>
<tr>
<td>The Office Building</td>
<td>0.4205</td>
<td>51.8927</td>
</tr>
<tr>
<td>Elephant</td>
<td>0.4068</td>
<td>52.0370</td>
</tr>
</tbody>
</table>

7. Reference

