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Abstract. The Wiener index, or the Wiener number, also known as the "sum of distances" of a connected 
graph, is one of the quantities associated with a molecular graph that correlates nicely to physical and 
chemical properties, and has been studied in depth in the literature. In this paper we develop a method to 
compute the Wiener index of molecular graphs and thereby obtain the Wiener index of all classes of regular 
plane tessellations composed of the same kind of regular polygons namely triangular, square, and hexagonal. 
Further we study the Szeged index of regular tessellations. 
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1. Introduction 
A graph G is an ordered pair of two sets, V and E, V = V(G) being a finite non-empty set and E = E(G) a 

binary relation defined on V . A graph can be visualized by representing the elements of V by vertices and 
joining pairs of vertices (x, y) by an edge if and only if (x, y) ∈ E(G). A graph is said connected if any two 
vertices, x and y, are the endpoints of a path; otherwise it is disconnected. The vertex degree is the number of 
edges incident in that vertex. If all the vertices in G show the same degree, the graph is called regular graph.  

A molecular graph is a collection of vertices representing the atoms in the molecule and a set of edges 
representing the covalent bonds. Graph representation of molecular structures is widely used in 
computational chemistry [29]. Quantitative structure-activity relationships (QSAR) and quantitative 
structure-property relationships (QSPR) represent attempts to correlate activities or properties with structural 
descriptors of compounds. To correlate and predict physical, chemical and biological activity/property from 
molecular structure is a very important and an unsolved problem in theoretical and computational chemistry 
[28]. The most important step in QSAR/QSPR is to numerically code the chemical structures of various 
molecules so as to build a correlation model between the chemical structures of various chemical compounds 
and the corresponding chemical and biological activities/properties. Thus, how to exactly transfer the 
chemical formula (or molecular graph) into numerical format has been a major task in QSAR/QSPR 
researches. There are many methods to quantify the molecular structures, of which the topological index is 
the most popular since it can be obtained directly from molecular structures and rapidly computed for large 
number of molecules [1, 4, 22, 33]. 

Topological indices are designed basically by transforming a molecular graph into a number. The first 
use of a topological index was made in 1947 by the chemist Harold Wiener [31]. The Wiener index is used to 
study the relation between molecular structure and physical and chemical properties of certain hydrocarbon 
compounds. It is defined as the sum of the distances between every pair of vertices of G. In the initial 
applications, the Wiener index is employed to predict physical parameters such as boiling points, heats of 
vaporization, molar volumes and molar refractions of alkanes [5, 8]. The study of Wiener index is one of the 
current areas of research in mathematical chemistry [3]. Researchers made some attempts to devise 
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techniques for finding the Wiener index of chemical compounds [3, 5, 8, 11, 12, 14, 17, 26, 27] and also 
used brute force method based on distance matrix to compute the same [23]. In theoretical computer science, 
Wiener index is considered as one of the basic descriptors of fixed interconnection networks because it 
provides the average distance between any two nodes of the network [9, 32].  

2. Wiener Index 
The Wiener index was first used by Wiener for approximating the boiling points of alkanes b.p.≈ α W (G) 

+ β ω3 + γ where α, β and γ are empirical constants, and ω3 is the number of vertex pairs that are at distance 3 
from each other in the molecular graph, called the "path number" by Wiener. In general, the Wiener index 
measures how compact a molecule is for its given weight. It therefore has predictive value and chemists and 
physics have found many such uses for the Wiener index. For a graph G, let dG (u, v) be the number of edges 
on any shortest path joining vertex u to vertex v. The Wiener index is defined as  
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where the sum runs over all ordered pairs of vertices. If the vertex set is linearly ordered, we can write  
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In this section, we use embedding as a tool to devise an elegant and simple technique for computing the 
Wiener index of graphs. We begin with certain definitions of the embedding problem. Graph embedding has 
been known as a powerful tool for implementation of parallel algorithms or simulation of different 
interconnection networks. A graph embedding [2] of a guest graph G into a host graph H is defined by an 
injective function f : V (G) → V (H) together with a mapping Pf  which assigns to each edge (u, v) of G a path 
Pf ((u, v)) between f (u) and f (v) in H. 

The edge congestion of an embedding f of G into H is the maximum number of edges of the graph G that 
are embedded on any single edge of H. Let ECf (e) denote the number of edges (u, v) of G such that e is in 
the path Pf ((u, v)) between f (u) and f (v) in H. The wirelength [24] of an embedding f of G into H is given 
by WLf (G, H) = Sum(ECf (e)) over e in E(H). The wirelength of G into H is defined as WL(G, H) = min WLf 
(G, H) where the minimum is taken over all embeddings f of G into H. It is interesting to note that the 
wirelength of embedding the complete graph Kn on n vertices into the graph G on n vertices is equal to the 
Wiener index of G.  

This motivates the following result. 
Theorem 1 (k-Division Method) Let G be a graph on n vertices. Let Ek(G) denote a collection of edges 

of G with each edge in G repeated exactly k times. Let {S1, S2,…,Sm} be a partition of Ek(G) such that each Si 
is an edge cut of G and the removal of edges of Si leaves G into 2 components Gi and Gi

’. Also each Si 
satisfies the following conditions: 

(i) For any two vertices u, v ∈ Gi, a shortest path between u and v has no edges in Si. 
(ii) For any two vertices u, v ∈ Gi

’, a shortest path between u and v has no edges in Si. 
(iii) For any two vertices u ∈ Gi and v ∈ Gi

’, a shortest path between u and v has exactly one edge in Si. 
Then W (G) = ∑ =

m

ik 1
1 |V (Gi)| (n-|V (Gi)|). 

3. Regular Plane Tessellations  
Patterns covering the plane by fitting together replicas of the same basic shape have been created by 

Nature and Man either by accident or by design. Examples range from the simple hexagonal pattern of the 
bees’ honeycomb or a tiled floor to the intricate decorations. These patterns are called tessellations. A regular 
tessellation is a pattern made by repeating a regular polygon. There are only three regular tessellations, 
composed of the same kind of regular polygons namely equilateral triangles, squares and hexagons. See 
Figure 1. These are the basis for the design of direct interconnection networks with highly competitive 
overall performance. Mesh connected computers and tori are based on regular square tessellations and are 
popular and well-known models for parallel processing. Hexagonal and honeycomb networks are based on 
regular triangular and hexagonal tessellations respectively. The inconsistency in the name selection (note that 

211



a hexagonal network is not based on a hexagon, but on a triangular tessellation) is due to the duality of the 
two tessellations (one can be obtained from the other by joining the centres of the neighbouring polygons).  

 

 
Fig. 1: Three regular tessellations composed of the same kind of regular polygons: (a) equilateral triangles (b) squares 

and (c) hexagons 

Honeycomb and hexagonal networks have been studied in a variety of contexts. They have been applied 
in chemistry to model benzenoid hydrocarbons in image processing [30], computer graphics [21] and cellular 
networks [13]. Honeycomb architecture was investigated in [25], where a suitable addressing scheme, 
routing and broadcasting algorithms were proposed. An addressing scheme for processors and corresponding 
routing and broadcasting algorithms for hexagonal network are studied in [6]. 

A two dimensional mesh M(m, n) is defined as the Cartesian product Pm × Pn where Pm and Pn denote the 
path on m and n vertices respectively. Honeycomb networks can be built from hexagons in various ways. A 
hexagon is treated as a honeycomb of size one, denoted by HC(1). The honeycomb HC(2) of size two is 
obtained by adding six hexagons to the boundary edges of HC(1). Inductively, honeycomb HC(n) of size n is 
obtained from HC(n-1) by adding a layer of hexagons around the boundary of HC(n-1). The number of 
vertices and edges of HC(n) are 6n2 and 9n2-3n respectively [25]. Hexagonal networks are based on the 
partition of a plane into equilateral triangles. Hexagonal network HX(n) of dimension n has 3n2-3n+1 
vertices and 9n2-15n+6 edges, where n is the number of vertices on one side of the hexagon [6]. In this 
section, we obtain the Wiener number of regular tessellation using k-division method. 

 
Lemma 1 )1)((6/1)),(( −+= mnnmmnnmMW . 
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4. Szeged Index 
Let e = (u, v) be an edge of the graph G. The number of vertices of G whose distance to the vertex u is 

smaller than the distance to the vertex v is denoted by nu(e). In other words, 
)},(),(),(:{)( wvdwudGVwwen GGu <∈= . Analogously, nv(e) is the number of vertices of G whose 

distance to the vertex v is smaller than the distance to the vertex u. In other words, 
)},(),(),(:{)( wudwvdGVwwen GGv <∈= . Note that the vertices equidistant to u and v are not counted. 

The Szeged index [19] is a molecular structure descriptor and is defined as 
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= . Hence we have the following results. 

Lemma 4 The Szeged index of mesh is given by Sz(M(m, n)) = 16 mn(2m2n2 - m2 - n2).  

Lemma 5 The Szeged index of Honeycomb network is given by Sz(HC(n)) = 3n2/2 (36n4-n2+1). 

It is interesting to note that the problem of devising techniques for computing the Szeged index of 
hexagonal network is still open. 
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5. Conclusion 
In this paper we have formulated a new technique to compute the Wiener index of graphs. We have good 

reasons to believe that many more chemical graphs remain to be explored whose Wiener index can be 
computed applying our technique. Finally, the problem of computing the Szeged index for hexagonal 
network is under investigation. 
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