
Achieving Consensus in The Presence of Both Link and Node Failure

Monalisa Dey +, Prasenjit Dey and Mamata Dalui

Department of Computer Science and Engineering, National Institute of Technology, Durgapur, WB, India
713209

Abstract. This work reports a simple and efficient solution to the consensus problem among the nodes of a
distributed system. The solution proposed considers both the communication link and node failures thereby
making the fault coverage better than the schemes reported so far. Detection of the faulty links and nodes
make this scheme more transparent. Better efficiency is achieved through the early disposal of faulty nodes.
This solution uses two rounds of message exchanges.

Keywords: byzantine agreement, consensus, early disposal, malicious and dormant link faults, malicious
and dormant node faults, reaching agreement.

1. Introduction
In a distributed system, it is sometime necessary for all the nodes to agree on a common value and hence

reach a unanimous decision. The process of reaching an agreement is easy when all the components (nodes
and links) in the system are non-faulty. But it becomes more complicated whenever some of the components
are faulty. In order to achieve agreement still tolerating these faulty components, certain agreement protocols
have been proposed in the literature. Lamport [1] had studied such a problem and it is called the Byzantine
Agreement [1]. Another related problem, the consensus problem has also been studied extensively in [2], [3],
[5]. In byzantine agreement, one node (source) sends its initial value to all others. If the source is non-faulty,
all the non-faulty nodes agree on that value. In the consensus problem, however, each of the nodes has their
own initial value. They exchange these values among themselves and finally all the non-faulty nodes agree
on the same value.

In this paper, we have addressed the consensus problem. Most of the solutions to consensus problem
have addressed either the assumption on node failure [1], [3], [4], [6], [7] or link failure [2], [5]. However
none of them have considered both failures simultaneously. This encouraged us to propose a solution MFC
(Maximum Fault Coverage) to the consensus problem assuming both link and node failure. The solution is
efficient in terms of minimum number of rounds required to reach consensus and detection of the faulty
components. The symptoms of a faulty link and node can be classified into two types: - dormant (crash) and
malicious (arbitrary).

Yan and Chin [2] had found out a solution to the consensus problem by protocol FLINK, but they have
treated all link failures as malicious. Wang and Yan [5] had solved this problem by protocol DLFM but they
have dealt with only dormant and malicious link failures. Also these protocols are unable to detect any of the
faulty components. We have not only considered the unreliability of both the communication links and the
nodes, but have also devised a method to detect the faulty components. DLFM can tolerate m ≤ ⌈ (n − d −
3)/2⌉ malicious and dormant faulty links only, FLINK can tolerate ⌊(n/2)⌋ − 1 malicious faulty links only.
MFC can tolerate t node faults with n > 2t, where n is the total number of nodes in the distributed system. It

+ Corresponding author. Tel.: + 91-9804575406.
 E-mail address: monalisa.dey.21@gmail.com.

133

2012 International Conference on Information and Network Technology (ICINT 2012)
IPCSIT vol. 37 (2012) © (2012) IACSIT Press, Singapore

can simultaneously tolerate m malicious and d dormant link faults respectively, in a fully connected network
to reach consensus where m ≤ ⌈((n−t)−d−3)/2⌉. Just two rounds of message exchanges are required for
achieving consensus. The amount of message exchange required is O(n2).

2. The Proposed Model
In a large distributed network reaching a common decision among the nodes require huge information

exchange. If the faulty nodes are identified early the whole process can be speeded up. A link may also be
damaged. The proposed model takes care of both dormant and malicious faults in nodes and links and the
system can reach a quick consensus in just two rounds of message exchanges.

In the first round, all the nodes exchange their own initial values. Each node i then arranges these values
in a vector vi. In the second round each node sends their vector vi to all other nodes, a 2d array MATi is
constructed at each node i. MATi is constructed using vector vj as the jth column in the array. In a faulty
system the arrays created are not the same. A node, by inspecting its MAT can identify the dormant and
malicious nodes and links. Any node detects all the faulty nodes by discarding the corresponding rows and
columns from its MAT. Each node keeps count of the faulty nodes it detects. If a node sees that the number
of valid rows in its array is greater than the number of faulty nodes, it decides on majority of 0’s or 1’s in the
row thereby forming majority matrix MAJ. By inspecting their individual MAJ each node then agrees on a
common value thereby reaching consensus. The common value is nothing but the majority of the 0’s and 1’s
in the majority matrix MAJ for each node. If a node has the same number of 0’s and 1’s it agrees on a
common value 0.

In this section the proposed protocol MFC is formally presented. The following assumptions are taken:
1) Fd and Ld are the number of dormant faulty nodes and links respectively.
2) Fm and Lm are the number of malicious faulty nodes and links respectively.
3) A faulty node doesn’t alter the values it receives from others.
4) f = Fd + Fm is the total number of faulty nodes.
5) Links are bidirectional in nature and the nodes on either end of a malicious faulty link, cannot be

malicious faulty.
Algorithm 1:
First round: Each node sends its initial value to all. If any node i does not receive any value from node j,

update vi[j] = M.
Second round: All nodes send their vectors to all other nodes. If a node i doesn’t receive any values

from node j, update MATi[k][j] = M. The detailed algorithm is presented in Figure 1.
The following example illustrates the precise steps of our proposed scheme MFC in algorithm 1. Let us

consider a system of seven nodes. Initial values vi=0 for i=1, 2 and 5. And vi=1 for i=3, 4, 6 and 7. The
vectors received by the nodes after the 1st round is shown in Figure 2. The 2d arrays formed at each node
after the 2nd round of message exchange are shown in Figure 3. Nodes p2 and p3 are taken to be malicious
and dormant faulty nodes respectively. Link24 (link between node 2 and node 4) and link57 are assumed to be
dormant and malicious faulty links respectively. In Figure 4 the step by step working of the next stage is
shown as described in the proposed scheme. Figure 4(a) shows the 2d array constructed at node 4. In the next
step shown in Figure 4(b) we have replaced the values of the row and column entries of malicious node 2
with any numerical value other than 0 and 1, say X to dispose of faulty nodes. Next we construct the
majority matrix MAJ of node 4 by taking majority of each row separately, ignoring the row and column
entries corresponding to the faulty nodes 2 and 3 shown in Figure 4(c). Each row k of the matrix MAJ is
inspected to find out the majority value which then becomes the decision value for node 4. In Figure 4(c) the
majority value in MAJ is 1 so the decision value for node 4 is 1. Similarly, DECi = 1 � i (excluding 2, 3).
The following lemmas and theorems are used to prove the correctness of MFC as in [5].

Lemma 1: Let node i has an initial value vi, irrespective of whether linkij is perfect or dormant MAJi in
MATj should be vi.

134

Fig. 1: Algorithm 1

Proof: Case 1: Suppose if linkij is perfect, the node j will receive vi from node i in the first round and vij
= vi in MATj. The value vi of node i will be broadcasted to the other nodes. There are at most ⌈
((n−t)−d−3)/2⌉ malicious faulty links in the system. Now, in the second round, node j receives at least
(n−t−d−1) − ⌈ ((n−t)−d−3)/2⌉ = ⌊ (n−t−d+1)/2⌋ vi’s in the i-th row of MATj , where d is the number of
dormant link faults which will be eliminated during the voting of majority. Hence, there are at least ⌊ (n − t −
d + 1)/2⌋ vi’s in the ith row, and the majority value in the ith row should be equal to vi.

Case 2-1: Linkij is dormant and n is an odd number, the node j will receive M from node i in the first
round and vij=M in MATj. Meanwhile, the value vi of node i will be broadcasted to the other nodes. There
are at most ⌈ ((n − t) − d − 3)/2⌉ malicious links and d dormant links in the system. After the second round,
node j receives at least (d+1) M’s and at least n-t-(d+1) - ⌈ ((n−t)−d−3)/2⌉ = ⌊(n−t−d+1)/2⌋ vi’s in the ith row
of MATj , where d is the number of M which will be eliminated during the voting of majority. Hence, there
are

 = MATMAJ for MAT = dec;

= 1
4 =4 4

0

1 X M 1 1 1 1

0 X M 0 0 0 1

1 X M 1 1 1 1

1 X M 1 0 1 1

M X M M M M M

(a) (b) (c)

0

1

1

1

1 M M 1 1 1 1

1 M M 1 1 1 1

1 M M 1 0 1 1

0 M M 0 0 0 0

1 M M M 1 0 1

0 M M 0 0 0 1

M M M M M M M

X X X X X X X

0 X M 0 0 0 0

P1 P2 P3 P4 P5 P6 P7

0 0 0 0 0 0 0

1 0 0 M 1 0 1

M M M M M M M

1 M 1 1 1 1 1

0 0 0 0 0 0 1

1 1 1 1 1 1 1

1 1 1 1 0 1 1

1: initialize f ← 0;
2: for i ← 1 to n do
3: initialize c←n;
4: for k ← 1 to n do
5: for j ← 1 to n do
6: if MATi[k][j]= =M then
7: for x ← 1 to n do
8: if MATi[j][x]!=M then
9: decrement c.
10: if MATi[k][j] = = MATi[j][k] then
11: linkkj is dormant link faulty.
12: end if
13: end if
14: end for
15: end if
16: if c= =n and k= =1 then
17: report node j is dormant faulty and increase the
 count of f.
18: end if
19: end for
20: end for
21: for k ← 1 to n do
22: for j ← 1 to n do
23: if MATi[k][j] != vk then
24: if MATi[j][k] != vj then

25: report linkkj is malicious faulty
26: else
27: report node k is malicious faulty and increase the
 count of f.
28: set all entries of row k and column k as any
 numerical value say X.
29: break out from inner loop.
30: end if
31: end if
32: end for
33: end for
 Number of non-faulty nodes NFN=n-f
34: end for
35: if NFN > f then
36: for i ← 1 to n do
37: for k ← 1 to n do
38: ignore row k if all its column are either M or X else
 take the majority of 0/1 of each row k of MATi and store
 it in a majority matrix MAJi
39: end for
40: end for
41: end if
 (� non-faulty node i do)
42: Each row k of MAJi is inspected to find out the
 majority between 0 and 1 values and finally that
 becomes the decision value for node i.

Fig. 3: 2d arrays received by each node after second round

Fig. 4: Decision Making

 3

0 0 M 0 0 0 0

1 0 M M 1 0 1

0 0 M 0 0 0 1

1 1 M 1 1 1 1

1 1 M 1 0 1 1

M M M M M M M

1 M M 1 1 1 1
MAT =

7

0 0 M 0 0 0 0

1 0 M M 1 0 1

1 1 M 1 0 1 1

1 1 M 1 1 1 1

0 0 M 0 0 0 1

M M M M M M M

1 M M 1 1 1 1MAT =

MAT = 4

M M M M M M M

0 M M 0 0 0 0

1 M M M 1 0 1

1 M M 1 1 1 1

0 M M 0 0 0 1

1 M M 1 0 1 1

1 M M 1 1 1 1

MAT =

0 0 M 0 0 0 0

1 0 M M

1 0 1

1

M M M M M M M

1 M M 1 1 1 1

1 1 M 1 1 1 1

1 1 M 1 0 1 1

0 0 M 0 0 0 1
2

M M M M M M M

0 0 M M 0 0 0

1 0 M M 1 0 1

1 M M M 1 1 1 MAT =

1 1 M M 1 1 1

0 0 M M 0 0 1

1 1 M M 0 1 1

1 0 1

MAT =6

1 0 M M

0 0 M 0 0 0 1

1 1 M 1 1 1 1

1 1 M 1 0 1 1

M M M M M M M

1 M M 1 1 1 1

0 0 M 0 0 0 0

MAT = 5

0 0 M 0 0 0 0

1 0 M M 1 0 1

M M M M M M M

0 0 M 0 0 0 1

1 1 M 1 1 1 1

1 1 M 1 0 1 1

1 M M 1 1 1 1Fig. 2: Vectors received by each
 node after first round

135

n-t-(d+1) non-M’s and at least ⌊ (n−d+1)/2⌋ (greater than ⌈ ((n−t)−(d+1)+1)/2⌉ = ⌈ ((n−t)−d)/2⌉the majority
required when n is in odd) vi’s in the ith row, so, the majority value in the ith row should be equal to vi.

Case 2-2: Linkij is dormant and n is an even number, the node j will receive M from node i in the first
round and vij=M in MATj. Meanwhile, the value vi of node i will be broadcasted to the other nodes. There
are at most ⌈ ((n − t) − d − 3)/2⌉ − 1 malicious links and d dormant links in the system as if d ≥ 1 and n is in
even. After the second round, node j receives at least (t+d+1) M’s and at least (n − (t + d + 1)) − (⌈ ((n − t) −
d − 3)/2⌉ − 1) = ⌊ ((n − t) − d + 1)/2⌋ + 1 vi’s in the ith row of MATj, where d is the number of M which will
be eliminated during the voting of majority. Hence, there are n-(t+d+1) non-M’s and at least ⌊ ((n − t) − d +
1)/2 ⌋ + 1 (greater than ⌈ (n − (t + d + 1) + 1)/2⌉ = ⌊ ((n − t) − d)/2⌋ the majority required when n is in even)
vi’s in the ith row, so, the majority value in the ith row should be equal to vi.

Theorem 1: The decision taken by each node i are correct.
Proof: For each node i the majority between the 0 and 1 entries in each row of its 2d array MATi is

computed and the majority matrix MAJi is constructed using those values. The faulty nodes do not take part
in constructing MAJi. Each row k in array MATi is nothing but the values that node k sends to each node i.
Since the total number of malicious links in an n node system containing d dormant link faults can be
maximum ⌈ ((n − t) − d − 3)/2⌉, the maximum number of faulty values in each row cannot be more than ⌈
((n− t) − d − 3)/2⌉. Thus while calculating the majority value of each row k, the correct initial value of each
node k is always obtained. Thus the decision taken by inspecting MAJ it is always correct.

3. Impossibility
In this section, some impossibility of the consensus problem is presented.
Theorem 2: If linkij is malicious faulty, node i or j cannot be malicious faulty nodes.
Proof: Let linkij is malicious faulty and node i is malicious faulty. Node i sends correct values to all

other nodes k and wrong value to node j. Due to the link fault ij that value will be further changed and node j
will get correct value from node i. Node j on the other hand is perfect, it would send correct value to all
except node i. Any other node k while inspecting row i in its 2d array MAT will see that every node has
received correct values from node i. Thus, malicious faulty node i will be impossible to detect. Whereas,
while inspecting row j, any node k will see that node j has sent its correct value to all except i. Thus node j is
wrongly reported as malicious faulty node.

Theorem 3: If the total number of the faulty links tfl > m+d, where m ≤ ⌈ ((n−t)−d−3)/2⌉, achieving
consensus is not possible.

Proof: Every node has n-1 links in the system. When tfl > m + d it might happen that a node has more
malicious links than perfect links even if the influence of d dormant faults was eliminated. Then even two
rounds of message exchange will not be enough to reach consensus as this node will always be confused by
the messages transferred through the malicious faulty links it has. And hence it might take a wrong decision.

4. Experimental Results
The fault coverage and tolerance capability of our proposed scheme MFC is compared with DLFM and

FLINK in Table 1. The first column represents the total number of participating nodes n. Column 2 (tolerable
node faults), column 3 (tolerable malicious links) and column 4 (tolerable dormant links) show the results of
MFC. Similarly column 5 and 6 shows the number of malicious and dormant links that DLFM can tolerate.
Column 7 and 8 provides the same FLINK can tolerate. The results shown in the table thus points to the fact
that the fault coverage capability of our scheme is better than the previous solutions.

5. Performance Study
The performance of MFC is compared with the DLFM [5] and FLINK [2], in terms of the number of

messages exchanged to reach an agreement. Table 2 shows the number of message exchanged by DLFM,
FLINK and MFC. The 1st column represents the number of participating nodes (n). Two sets of observations
for total number of dormant nodes and dormant links are taken. Column 2 (tolerable dormant links), column
3 (tolerable malicious links), column 4 (tolerable dormant nodes) and column 5 (total no. of messages
exchanged) give the results of MFC. Column 6 (dormant link faults), column 7 (malicious link faults) and

136

column 8 (messages exchanged) show the results of DLFM. Column 9 (malicious link faults) and column 10
(messages exchanged) show the results of FLINK. Figure 5 and Figure 6 shows the performance
comparisons between these three protocols in term of number of messages exchanged. The results shown in
Table I and II point to the fact that the proposed solution maximizes the fault coverage capability of a
system. As the size of the network and the number of dormant faults increase, the total number of messages
exchanged is reduced and hence efficiency of the proposed scheme increases.

6. Conclusion
In a distributed system, in reality, both the nodes and links of a fully connected network can be faulty.

These faults can again be categorized into dormant and malicious. MFC mainly deals with the issue of
reaching consensus in a fully connected distributed system where both the nodes and the communication
links can be faulty. It ensures a correct decision with just two rounds of message exchanges. A better fault
coverage is obtained than the state-of-art solutions. Faulty nodes are disposed of early leading to a quicker
solution. Detection of the faulty components makes this scheme more efficient. We will also see that the
number of messages exchanged to reach consensus is lesser than the previous solutions and as the number of
dormant faults increase, the efficiency of our scheme increases. However further work can be done on this
scheme to reduce the information exchange complexity.

Table. 1: Fault coverage capability of MFC, DLFM and FLINK

n MFC DLFM FLINK
#t #m #dl #m #dl #m #d

4

0 0 <=2 0 <=2 0 0
1 0 1 0 1 0

1 0 1 0 0 0 0

5

0 0 <=3 0 <=3 0 0
1 <=1 1 <=1 1 0

1 0 <=2 0 <=2 0 0
1 0 1 0 1 0

2 0 1 0 0 0 0

6

0

0 <=4 0 <4 0 0
1 <=2 1 <=2 1 0
2 0 2 0 2 0

1 0 <=3 0 <=3 0 0
1 <=1 1 <=1 1 0

2 0 <=2 0 <=2 0 0
1 0 1 0 1 0

7

0

0 <=5 0 <5 0 0
1 <=3 1 <=3 1 0
2 <=1 2 <=1 2 0

1

0 <=4 0 <4 0 0
1 <=2 1 <=2 1 0
2 0 2 0 2 0

2 0 <=3 0 <=3 0 0
1 <=1 1 <=1 1 0

3 0 <=2 0 <=2 0 0
1 0 1 0 1 0

Table. 2: Comparison of messages exchanged between MFC, DLFM and FLINK

n

MFC DLFM FLINK

#dl #m #dn #msg #dl #m #msg #m #msg

20
9 0 9 400 18 0 724 9 760

6 3 5 558 9 4 742 9 760

40
19 0 19 1600 38 0 3044 19 3120

14 7 10 2312 19 9 3082 19 3120

137

60
29 0 29 3600 58 0 6964 29 7080

22 10 15 5266 29 14 7022 29 7080

80
39 0 39 6400 78 0 12484 39 12640

29 14 20 9422 39 19 12562 39 12640

100
49 0 49 10000 98 0 19604 49 19800

37 18 25 14776 49 24 19702 49 19800

 Fig. 5: Experimental Result I Fig. 6: Experimental Result II

7. References
[1] Lamport L., Pease M., Shostak R., Reaching Agreement in the presence of Faults, Journal of ACM, Vol.27, pp.

228- 234, Apr 1980.

[2] K.Q. Yan and Y.H. Chin, ”An Optimal Solution for Consensus Problem in an Unreliable Communication System,”
Proceedings of International Conference on Parallel Processing, Aug. 1988, pp. 388-391.

[3] F.J. Meyer, and D.K. Pradhan, ”Consensus with Dual Failure Modes”, IEEE Transactions on Parallel and
Distributed Systems, vol. 2, no. 2, April 1991.

[4] M. Dalui, B Chakraborty, B. K. Sikdar, “Quick Consensus Through Early Disposal of Faulty Processes”,
Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics San Antonio, TX, USA
- October 2009.

[5] S.C. Wang and K. Q. Yan, “Revisit Consensus Problem on Dual Link Failure Modes”, Proceeding of Computer
Software and Applications Conference, 1998. COMPSAC ’98, pp. 84 - 89, 19-21 Aug 1998, Vienna, Austria.

[6] D. Dolev, “Unanimity in an Unknown and Unreliable Environment,” IEEE FOCS, 1981.

[7] M. Fischer, ”The Consensus Problem in Unreliable Distributed System (A Brief Survey)” Lecture Notes in
Computer Science, Proceeding of the 1983 International FCTConference, Borgholm, Sweden, pp. 127-140, Aug.
1983.

138

