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Abstract. This work reports a simple and efficient solution to the consensus problem among the nodes of a 
distributed system. The solution proposed considers both the communication link and node failures thereby 
making the fault coverage better than the schemes reported so far. Detection of the faulty links and nodes 
make this scheme more transparent. Better efficiency is achieved through the early disposal of faulty nodes. 
This solution uses two rounds of message exchanges. 
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1. Introduction  
In a distributed system, it is sometime necessary for all the nodes to agree on a common value and hence 

reach a unanimous decision. The process of reaching an agreement is easy when all the components (nodes 
and links) in the system are non-faulty. But it becomes more complicated whenever some of the components 
are faulty. In order to achieve agreement still tolerating these faulty components, certain agreement protocols 
have been proposed in the literature. Lamport [1] had studied such a problem and it is called the Byzantine 
Agreement [1]. Another related problem, the consensus problem has also been studied extensively in [2], [3], 
[5]. In byzantine agreement, one node (source) sends its initial value to all others. If the source is non-faulty, 
all the non-faulty nodes agree on that value. In the consensus problem, however, each of the nodes has their 
own initial value. They exchange these values among themselves and finally all the non-faulty nodes agree 
on the same value. 

In this paper, we have addressed the consensus problem. Most of the solutions to consensus problem 
have addressed either the assumption on node failure [1], [3], [4], [6], [7] or link failure [2], [5]. However 
none of them have considered both failures simultaneously. This encouraged us to propose a solution MFC 
(Maximum Fault Coverage) to the consensus problem assuming both link and node failure. The solution is 
efficient in terms of minimum number of rounds required to reach consensus and detection of the faulty 
components. The symptoms of a faulty link and node can be classified into two types: - dormant (crash) and 
malicious (arbitrary). 

Yan and Chin [2] had found out a solution to the consensus problem by protocol FLINK, but they have 
treated all link failures as malicious. Wang and Yan [5] had solved this problem by protocol DLFM but they 
have dealt with only dormant and malicious link failures. Also these protocols are unable to detect any of the 
faulty components. We have not only considered the unreliability of both the communication links and the 
nodes, but have also devised a method to detect the faulty components. DLFM can tolerate m ≤ ⌈ (n − d − 
3)/2⌉ malicious and dormant faulty links only, FLINK can tolerate ⌊(n/2)⌋ − 1 malicious faulty links only. 
MFC can tolerate t node faults with n > 2t, where n is the total number of nodes in the distributed system. It 
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can simultaneously tolerate m malicious and d dormant link faults respectively, in a fully connected network 
to reach consensus where m ≤ ⌈((n−t)−d−3)/2⌉. Just two rounds of message exchanges are required for 
achieving consensus. The amount of message exchange required is O(n2). 

2. The Proposed Model 
In a large distributed network reaching a common decision among the nodes require huge information 

exchange. If the faulty nodes are identified early the whole process can be speeded up. A link may also be 
damaged. The proposed model takes care of both dormant and malicious faults in nodes and links and the 
system can reach a quick consensus in just two rounds of message exchanges. 

In the first round, all the nodes exchange their own initial values. Each node i then arranges these values 
in a vector vi. In the second round each node sends their vector vi to all other nodes, a 2d array MATi is 
constructed at each node i. MATi is constructed using vector vj as the jth column in the array. In a faulty 
system the arrays created are not the same. A node, by inspecting its MAT can identify the dormant and 
malicious nodes and links. Any node detects all the faulty nodes by discarding the corresponding rows and 
columns from its MAT. Each node keeps count of the faulty nodes it detects. If a node sees that the number 
of valid rows in its array is greater than the number of faulty nodes, it decides on majority of 0’s or 1’s in the 
row thereby forming majority matrix MAJ. By inspecting their individual MAJ each node then agrees on a 
common value thereby reaching consensus. The common value is nothing but the majority of the 0’s and 1’s 
in the majority matrix MAJ for each node. If a node has the same number of 0’s and 1’s it agrees on a 
common value 0. 

In this section the proposed protocol MFC is formally presented. The following assumptions are taken: 
1) Fd  and  Ld are the number of dormant faulty nodes and links respectively. 
2) Fm  and Lm are the number of malicious faulty nodes and links respectively. 
3) A faulty node doesn’t alter the values it receives from others. 
4) f = Fd + Fm is the total number of faulty nodes. 
5) Links are bidirectional in nature and the nodes on either end of a malicious faulty link, cannot be 

malicious faulty. 
Algorithm 1: 
First round: Each node sends its initial value to all. If any node i does not receive any value from node j, 

update vi[j] = M. 
Second round: All nodes send their vectors to all other nodes. If a node i doesn’t receive any values 

from node j, update MATi[k][j] = M. The detailed algorithm is presented  in Figure 1. 
The following example illustrates the precise steps of our proposed scheme MFC in algorithm 1. Let us 

consider a system of seven nodes. Initial values vi=0 for i=1, 2 and 5. And vi=1 for i=3, 4, 6 and 7. The 
vectors received by the nodes after the 1st round is shown in Figure 2. The 2d arrays formed at each node 
after the 2nd round of message exchange are shown in Figure 3. Nodes p2 and p3 are taken to be malicious 
and dormant faulty nodes respectively. Link24 (link between node 2 and node 4) and link57 are assumed to be 
dormant and malicious faulty links respectively. In Figure 4 the step by step working of the next stage is 
shown as described in the proposed scheme. Figure 4(a) shows the 2d array constructed at node 4. In the next 
step shown in Figure 4(b) we have replaced the values of the row and column entries of malicious node 2 
with any numerical value other than 0 and 1, say X to dispose of faulty nodes. Next we construct the 
majority matrix MAJ of node 4 by taking majority of each row separately, ignoring the row and column 
entries corresponding to the faulty nodes 2 and 3 shown in Figure 4(c). Each row k of the matrix MAJ is 
inspected to find out the majority value which then becomes the decision value for node 4. In Figure 4(c) the 
majority value in MAJ is 1 so the decision value for node 4 is 1. Similarly, DECi = 1 � i (excluding 2, 3).  
The following lemmas and theorems are used to prove the correctness of  MFC as in [5]. 

Lemma 1: Let node i has an initial value vi, irrespective of whether linkij is perfect or dormant MAJi  in 
MATj should be vi. 
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Fig. 1: Algorithm 1 

Proof: Case 1: Suppose if linkij is perfect, the node j will receive vi from node i in the first round and vij 
= vi in MATj. The value vi of node i will be broadcasted to the other nodes. There are at most ⌈ 
((n−t)−d−3)/2⌉ malicious faulty links in the system. Now, in the second round, node j receives at least 
(n−t−d−1) − ⌈ ((n−t)−d−3)/2⌉ = ⌊ (n−t−d+1)/2⌋ vi’s in the i-th row of MATj , where d is the number of 
dormant link faults which will be eliminated during the voting of majority. Hence, there are at least ⌊ (n − t − 
d + 1)/2⌋ vi’s in the ith row, and the majority value in the ith row should be equal to vi. 

Case 2-1: Linkij is dormant and n is an odd number, the node j will receive M from node i in the first 
round and vij=M in MATj. Meanwhile, the value vi of node i will be broadcasted to the other nodes. There 
are at most  ⌈ ((n − t) − d − 3)/2⌉ malicious links and d dormant links in the system. After the second round, 
node j receives at least (d+1) M’s and at least n-t-(d+1) - ⌈ ((n−t)−d−3)/2⌉ = ⌊(n−t−d+1)/2⌋ vi’s in the ith row 
of MATj , where d is the number of M which will be eliminated during the voting of majority. Hence, there 
are  
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1: initialize f ← 0; 
2: for i ← 1 to n do 
3:   initialize c←n; 
4:   for k ← 1 to n do 
5:     for j ← 1 to n do 
6:       if MATi[k][j]= =M then 
7:         for x ← 1 to n do 
8:           if MATi[j][x]!=M then 
9:              decrement c. 
10:             if MATi[k][j] = = MATi[j][k] then 
11:               linkkj is dormant link faulty. 
12:             end if 
13:           end if 
14:         end for 
15:       end if 
16:       if c= =n and k= =1 then 
17:        report node j is dormant faulty and increase the  
             count of f. 
18:        end if 
19:       end for 
20:   end for 
21:   for k ← 1 to n do 
22:     for j ← 1 to n do 
23:         if MATi[k][j] != vk then 
24:         if MATi[j][k] != vj then 

25:           report linkkj  is malicious faulty 
26:         else 
27:           report node k is malicious faulty and increase the  
                count of f. 
28:           set all entries of row k and column k as any 
                numerical value say X. 
29:           break out from inner loop. 
30:         end if 
31:       end if 
32:     end for 
33:   end for 
         Number of non-faulty nodes NFN=n-f 
34: end for 
35: if  NFN > f then 
36:   for i ← 1 to n do 
37:     for k ← 1 to n do 
38:       ignore row k if all its column are either M or X else 
            take the majority of 0/1 of each row k of MATi and store 
            it in a majority matrix MAJi 
39:      end for 
40:   end for 
41: end if 
     (� non-faulty node i do) 
42: Each row k of MAJi  is inspected to find out the 
      majority between 0 and 1 values and finally that 
     becomes the decision value for node i. 

 

Fig. 3: 2d arrays received by each node after second round 

Fig. 4: Decision Making 
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n-t-(d+1) non-M’s and at least ⌊ (n−d+1)/2⌋ (greater than ⌈ ((n−t)−(d+1)+1)/2⌉ = ⌈ ((n−t)−d)/2⌉the majority 
required when n is in odd) vi’s in the ith row, so, the majority value in the ith row should be equal to vi. 

Case 2-2: Linkij is dormant and n is an even number, the node j will receive M from node i in the first 
round and vij=M in MATj. Meanwhile, the value vi of node i will be broadcasted to the other nodes. There 
are at most ⌈ ((n − t) − d − 3)/2⌉ − 1 malicious links and d dormant links in the system as if d ≥ 1 and n is in 
even. After the second round, node j receives at least (t+d+1) M’s and at least (n − (t + d + 1)) − (⌈ ((n − t) − 
d − 3)/2⌉ − 1) = ⌊ ((n − t) − d + 1)/2⌋ + 1 vi’s in the ith row of MATj, where d is the number of M which will 
be eliminated during the voting of majority. Hence, there are n-(t+d+1) non-M’s and at least  ⌊ ((n − t) − d + 
1)/2 ⌋ + 1 (greater than ⌈ (n − (t + d + 1) + 1)/2⌉ = ⌊ ((n − t) − d)/2⌋  the  majority required when n is in even) 
vi’s in the ith row, so, the majority value in the ith row should be equal to vi. 

Theorem 1: The decision taken by each node i are correct. 
Proof: For each node i the majority between the 0 and 1 entries in each row of its 2d array MATi is 

computed and the majority matrix MAJi is constructed using those values. The faulty nodes do not take part 
in constructing MAJi. Each row k in array MATi is nothing but the values that node k sends to each node i. 
Since the total number of malicious links in an n node system containing d dormant link faults can be 
maximum ⌈ ((n − t) − d − 3)/2⌉, the maximum number of faulty values in each row cannot be more than ⌈   
((n− t) − d − 3)/2⌉. Thus while calculating the majority value of each row k, the correct initial value of each 
node k is always obtained. Thus the decision taken by inspecting MAJ  it is always correct. 

3. Impossibility 
In this section, some impossibility of the consensus problem is presented. 
Theorem 2: If linkij is malicious faulty, node i or j cannot be malicious faulty nodes. 
Proof: Let linkij is malicious faulty and node i is malicious faulty. Node i sends correct values to all 

other nodes k and wrong value to node j. Due to the link fault ij that value will be further changed and node j 
will get correct value from node i. Node j on the other hand is perfect, it would send correct value to all 
except node i. Any other node k while inspecting row i in its 2d array MAT will see that every node has 
received correct values from node i. Thus, malicious faulty node i will be impossible to detect. Whereas, 
while inspecting row j, any node k will see that node j has sent its correct value to all except i. Thus node j is 
wrongly reported as malicious faulty node. 

Theorem 3: If the total number of the faulty links tfl > m+d, where m ≤ ⌈ ((n−t)−d−3)/2⌉, achieving 
consensus is not possible. 

Proof: Every node has n-1 links in the system. When tfl > m + d it might happen that a node has more 
malicious links than perfect links even if the influence of d dormant faults was eliminated. Then even two 
rounds of message exchange will not be enough to reach consensus as this node will always be confused by 
the messages transferred through the malicious faulty links it has. And hence it might take a wrong decision. 

4. Experimental Results 
The fault coverage and tolerance capability of our proposed scheme MFC is compared with DLFM and 

FLINK in Table 1. The first column represents the total number of participating nodes n. Column 2 (tolerable 
node faults), column 3 (tolerable malicious links) and column 4 (tolerable dormant links) show the results of 
MFC. Similarly column 5 and 6 shows the number of malicious and dormant links that DLFM can tolerate. 
Column 7 and 8 provides the same FLINK can tolerate. The results shown in the table thus points to the fact 
that the fault coverage capability of our scheme is better than the previous solutions. 

5. Performance Study 
The performance of MFC is compared with the DLFM [5] and FLINK [2], in terms of the number of 

messages exchanged to reach an agreement. Table 2 shows the number of message exchanged by DLFM, 
FLINK and MFC. The 1st column represents the number of participating nodes (n). Two sets of observations 
for total number of dormant nodes and dormant links are taken. Column 2 (tolerable dormant links), column 
3 (tolerable malicious links), column 4 (tolerable dormant nodes) and column 5 (total no. of messages 
exchanged) give the results of MFC. Column 6 (dormant link faults), column 7 (malicious link faults) and 
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column 8 (messages exchanged) show the results of DLFM. Column 9 (malicious link faults) and column 10 
(messages exchanged) show the results of FLINK. Figure 5 and Figure 6 shows the performance 
comparisons between these three protocols in term of number of messages exchanged. The results shown in 
Table I and II point to the fact that the proposed solution maximizes the fault coverage capability of a 
system. As the size of the network and the number of dormant faults increase, the total number of messages 
exchanged is reduced and hence efficiency of the proposed scheme increases. 

6. Conclusion 
In a distributed system, in reality, both the nodes and links of a fully connected network can be faulty. 

These faults can again be categorized into dormant and malicious. MFC mainly deals with the issue of 
reaching consensus in a fully connected distributed system where both the nodes and the communication 
links can be faulty. It ensures a correct decision with just two rounds of message exchanges. A better fault 
coverage is obtained than the state-of-art solutions. Faulty nodes are disposed of early leading to a quicker 
solution. Detection of the faulty components makes this scheme more efficient. We will also see that the 
number of messages exchanged to reach consensus is lesser than the previous solutions and as the number of 
dormant faults increase, the efficiency of our scheme increases. However further work can be done on this 
scheme to reduce the information exchange complexity. 

Table. 1: Fault coverage capability of MFC, DLFM and FLINK 

n MFC DLFM FLINK 
#t #m #dl #m #dl #m #d 

 
4 

0 0 <=2 0 <=2 0 0 
1 0 1 0 1 0 

1 0 1 0 0 0 0 

 
 

5 

0 0 <=3 0 <=3 0 0 
1 <=1 1 <=1 1 0 

1 0 <=2 0 <=2 0 0 
1 0 1 0 1 0 

2 0 1 0 0 0 0 

 
 
 

6 

 
0 

0 <=4 0 <4 0 0 
1 <=2 1 <=2 1 0 
2 0 2 0 2 0 

1 0 <=3 0 <=3 0 0 
1 <=1 1 <=1 1 0 

2 0 <=2 0 <=2 0 0 
1 0 1 0 1 0 

 
 
 
 
 

7 

 
0 

0 <=5 0 <5 0 0 
1 <=3 1 <=3 1 0 
2 <=1 2 <=1 2 0 

 
1 

0 <=4 0 <4 0 0 
1 <=2 1 <=2 1 0 
2 0 2 0 2 0 

2 0 <=3 0 <=3 0 0 
1 <=1 1 <=1 1 0 

3 0 <=2 0 <=2 0 0 
1 0 1 0 1 0 

 
Table. 2: Comparison of messages exchanged between MFC, DLFM and FLINK 

 

n 

MFC DLFM FLINK 

#dl #m #dn #msg #dl #m #msg #m #msg 

20 
9 0 9 400 18 0 724 9 760 

6 3 5 558 9 4 742 9 760 

40 
19 0 19 1600 38 0 3044 19 3120 

14 7 10 2312 19 9 3082 19 3120 
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60 
29 0 29 3600 58 0 6964 29 7080 

22 10 15 5266 29 14 7022 29 7080 

80 
39 0 39 6400 78 0 12484 39 12640 

29 14 20 9422 39 19 12562 39 12640 

100 
49 0 49 10000 98 0 19604 49 19800 

37 18 25 14776 49 24 19702 49 19800 

 
                    Fig. 5: Experimental Result I                                              Fig. 6: Experimental Result II 
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