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Abstract. Three dimensional biglobal linear stability of Poiseuille-Rayleigh-Bénard (PRB) duct flows in binary fluids with 

Soret effect has been analyzed by using a two-dimensional Chebyshev collocation method in order to get the numerical dispersion 
relation. For a negative separation factor ψ ൌ െ0.01 and without throughflow, four dominant pairs of traveling tranverse modes 
(with finite wavenumbers k) (denoted as modes A, B, C and D) have been found and each pair corresponds to two symmetry 
degenerate left and right traveling modes which have the same critical Rayleigh number. With the increase of the duct aspect ratio A, 
the critical Rayleigh numbers for these four pairs of modes decrease and closely approach the value obtained in a two-dimensional 
situation, mode A always remaining the dominant mode. Oscillatory longitudinal modes (corresponding to k = 0) have also been 
found. Their critical Rayleigh numbers (above those of the transverse modes) present oscillatory variations when the aspect ratio A is 
increased, corresponding to longitudinal modes with an increasing number of rolls. When the pressure gradient is imposed along the 
duct, the induced throughflow breaks the symmetry degeneracy of the pairs of traveling transverse modes, as it was already observed 
in two-dimensional PRB flows. For the aspect ratio A = 3, the overall critical Rayleigh number in the Reynolds number range studied 
is determined by the upstream transverse mode A. In contrast, for larger aspect ratios as A = 7, different modes are successively 
dominant as the Reynolds number is increased, involving both upstream and downstream transverse modes A and even the 
longitudinal mode. 
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1. Introduction  
Laminar forced and mixed convection of binary fluids in a horizontal duct heated from below has many practical 

technological applications like the cooling process of electronic devices and the technics of chemical vapor deposition 
(CVD) for the production of magnetic and optic data storage devices in the electronics industry. It also leads to a variety 
of spatiotemporal patterns, the study of which has a great theoretical interest. In fact, the spatiotemporal behavior of the 
dissipative structures appearing in binary mixture convection (Cross & Hohenberg 1993) has been revealed to be 
complex due to the combination of thermal forcing (characterized by the Rayleigh number Ra) and Soret coupling 
between temperature and concentration fields (characterized by the separation factor ); and the externally imposed 
throughflow (characterized by the Reynolds number Re) will further break the symmetries existing in the pure 
Rayleigh-Bénard case. 

For the three-dimensional Poiseuille-Rayleigh-Bénard flow (PRB flows), most successful researches are based on the 
pure fluid, though for binary fluids the thresholds of the three-dimensional flows without the two extent spanwise 
boundaries can be deduced from the two-dimensional linear stability analysis through the Squire transformation of the 
full linear stability equations (Hu et al. 2007). For pure fluids, it has been revealed (Gage & Reid 1968; Luijkx et al. 
1981; Platten & Legros 1984; Nicolas et al. 2000) that there exist two main unstable modes which correspond to the 
thermo-convective roll patterns of the transversal rolls Rୄ and the longitudinal rolls Rצ. In the case of ducts of in finite 
lateral extension, the longitudinal rolls appear first since the critical Rayleigh number for the longitudinal rolls is always 
smaller than that for the transversal rolls. For finite rectangular ducts, the lateral confinement tends to stabilize both of 
the two modes of the basic flow. But the threshold (i.e. the critical Rayleigh number) of the longitudinal rolls which is 
independent of the Reynolds number and Prandtl number, increases much faster than that of the transversal rolls which 
increases with the increase of the Reynolds nmuber and the increase of the Prandtl number. This makes that the 
transversal rolls occur first at small Reynolds number while the longitudinal rolls occur first at large Reynolds number. 
For the convective and absolute instability study, Müller et al. (1992, 1993) have first determined the transition curve 

2012 International Conference on Fluid Dynamics and Thermodynamics Technologies (FDTT 2012)
IPCSIT vol.33(2012)©(2012) IACSIT Press, Singapore

169



between the convective and absolute instability zones for the transverse rolls by using a weakly non-linear theory based 
on a Ginzburg-Landau equation. Ouazzani et al. (1990, 1995), experimentally and Nicolas et al. (1997), numerically, 
have shown that the transition between the basic flow and the transversal rolls exactly corresponds to the AI/CI 
boundary curve, provided that the flow is not continuously perturbated near the inlet. Furthermore, for infinite extent 
system, by evaluating the longtime behaviour of the Green function in the horizontal plane (the concept of AI/CI refers 
to the papers (Briggs 1964; Bers 1973; Brevdo 1991; Huerre & Monkewitz 1985)), Carrière & Monkewitz (1999) 
successfully and theoretically revealed that the mode reaching zero group velocity at the convective-absolute transition 
always corresponds to transverse rolls, while the system remains convectively unstable with respect to pure streamwise 
(longitudinal) rolls for all non-zero Reynolds numbers. 

So far, most researches for the three-dimensional PRB flows are based on pure fluids, the researches on binary fluids, 
however, focus on the two-dimensional system. With continuous advances in algorithms for the numerical solution of 
large nonsymmetric real/complex generalised eigenvalue problems alongside continuous computing hardware 
improvements, the instability of flows developing in two inhomogeneous and one homogeneous spatial direction can be 
analyzed (BiGlobal instability analysis). BiGlobal or TriGlobal instability analysis for all kinds of flow problems 
become more and more popular recent years and are reviewed by Theofilis (2003, 2011) for different applications. In 
this paper, linear BiGlobal stability analysis of PRB flows will be studied for binary fluids to see the difference between 
binary fluids with negative separation factors and pure fluids in the three-dimensional PRB flow system. The 
formulation of the problem is given in Sec. 2. After that,  BiGlobal instabilities of PRB flows in binary fluids with 
negative separation factors are analyzed in Sec. 4.   

2. Formulation 
We consider a rectangular duct with height H (along z) and width L (along y) which is filled with a binary mixture 

and is heated from below (a temperature T2 is applied at the upper wall and T1 > T2 is applied at the bottom; see the 
schematic representation in figure 1). A steady laminar flow may be generated inside the duct by imposing a con-stant 
pressure gradient along the homogeneous spatial x-direction. Due to the influence of the gravitational effect, the binary 
mixture may become unstable under the influence of vertical temperature and concentration gradients. To take this into 
account, the density variations are considered, but, according to the Boussinesq approximation, they are restricted to the 
buoyancy term and are expressed as a linear law, 

 
where ்ߚ  and ߚ஼  are the thermal and solutal expansion coefficients; ρ଴ , T଴  and C଴  are reference values for density, 
temperature and concentration, respectively, which are taken as the mean initial values of the respective fields. 

The Soret effect, which arises as the contribution of the temperature gradient to the mass flux, is considered here, 
whereas the Dufour effect, which arises as the contribution of the concentration gradient to the heat flux, is neglected. 
This assumption is valid for liquid mixtures. The mass flux JC  and the heat flux JT  are then 

 
where DC, DS and DT are the solutal diffusion coeficient, Soret diffusion coeficient and thermal conductivity, respectively. 
The conductive steady state will then correspond to linear variations along the vertical z-direction for both the 
temperature and the concentration, leading to a concentration difference ∆C = -DS∆T/DC induced by the applied 
temperature difference ∆T = T1 -T2. 

The flow in this system is modeled by the Navier-Stokes equations coupled to an energy equation and a concentration 
equation. In these equations, length, velocity, time and pressure are scaled by ܪ ,ܪ/ߢ ,ܪଶ/ߢ and ρ଴ߢଶ/ܪଶ, respectively 
(κ is the thermal diffusivity). Thus the dimensionless governing equations of the three-dimensional Poiseuille-Rayleigh-
Bénard flow are 

 
where v = (u, v, w) is the three-dimensional dimensionless velocity vector, ez is the unit vector in the vertical direction. 
The dimensionless parameters appearing in the governing system are the Prandtl number Pr, the Rayleigh number Ra, 
the separation factor , and the Lewis number Le.  Ethanol-water mixtures are very convenient for studying Soret-
driven flows, because the separation factor can be varied over a wide range by changing the average ethanol 
concentration. For typical experimental conditions, 5 < Pr < 11 and Le ≈ 0.01, so that Pr = 10 and Le = 0.01 are usually 
used to represent the values of the Prandtl number and Lewis number for ethanol-water mixtures. These are the values 
we will choose in our study. The separation factor  will be chosen as negative, a case where symmetric left and right 
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traveling waves are found for Re = 0, and its value will be fixed to ψ ൌ െ0.01 . 
The section of the rectangular duct is now defined in dimensionless units by Ω ൌ yԖሾ0, Aሿ ൈ zԖሾ0,1ሿ, where A = L/H 

is the aspect ratio of the duct. The boundary conditions associated to the governing equations are then 

 
The non-dimensional basic steady state can easily be obtained by setting the linearly distributed temperature and 
concentration field along the bounded z-direction 

 
and by imposing a constant pressure gradient in the unbounded x-direction with a linear profile of pressure gradient in 
the gravitational z-direction, 

 
which drives a steady laminar flow, i.e. the Poiseuille flow. Thus the basic streamwise velocity is solved by the Poisson 
equation 

 
where ׏ଶୢଶ ൌ ∂୷ଶ ൅ ∂୷ଶ. The boundary conditions for the basic velocity field are 

 
The disturbed three-dimensional Poiseuille-Rayleigh-Bénard flow with Soret effect can be decomposed as 

 
where the primes refer to small perturbation quantities. After substituting these variables into the governing equations 
and neglecting the terms which are quadratic with respect to the perturbations, we can obtain the linearized perturbation 
equations (for brevity not presented here). The perturbation quantities can further be expanded as normal modes, 

 
where k is a real wavenumber and  a complex frequency. Substituting these expressions in the linearized system, we 
obtain the linear stability equations expressed as 

 
where  

 
The corresponding boundary conditions are 

 
The linear stability equations  are two-dimensional partial differential equations, and if there exists a nontrivial solution 
for the equations, a corresponding dispersion relation 

 
should be satisfied, and we need to solve a biglobal eigenvalue problem. Because it is impossible to find the explicit 
analytical dispersion relation if there is no further simplification, the dispersion relation has to be obtained numerically. 
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In this paper, the two-dimensional Chebyshev spectral collocation method (Canuto et al. 2006) is used to discretize the 
eigenvalue problem and the implicitly restarted Arnoldi method (Lehoucq & Sorensen 1996) to solve the resulting 
general eigenvalue problem. 

3. BiGlobal instability analysis 
The pure Rayleigh-Bénard situation for binary fluids (Pr = 10, Le = 0:01, ψ ൌ െ0.01) in a duct without throughflow 

is first considered by setting Re = 0. In such a case with negative Soret effect and for A = 5 and Ra = 2000, four unstable 
oscillatory modes, corresponding to symmetry degenerate left and right traveling modes and labelled as A, B, C and D, 
are found for k = 3.14. The convergence of the four corresponding eigenvalues with the grid size is shown in Table 1. 
We see that the least stable modes have fastest convergence, and that for the mode D with the slowest convergence, 
there is already have valid digits in the eigenvalue for the 32 × 32 resolution. Such a 32 × 32 grid has been used for 
most computations in this paper. 

The neutral curves for these four modes, plotted in the parameter plane k - Ra, are given in figure 2 for different duct 
aspect ratios A. We see that with the increase of the aspect ratio, the four neutral curves for these modes become closer 
and the parts of these curves corresponding to longitudinal modes (weak k values) eventually disappear from the graph 
(they could, however, exist for larger Ra values). This seems to indicate that the four curves would merge to give a 
single neutral curve for A ՜ ∞, i.e. in the two-dimensional limiting case. In fact, for the corresponding two-dimensional 
Rayleigh-Bénard situation with Soret effect (Pr = 10, Le = 0.01 and ψ ൌ െ0.01), the critical Rayleigh number is Rac = 
1743.894, and the critical wavenumber is kc = 3.117. The different curves seem to all evolve towards these critical 
values as A is increased. The curve of mode A, however, evolves more quickly and this curve is already quite close to 
the two-dimensional critical values for A = 5. 

The spatial structure of these modes is shown in figure 3 through their temperature distributions at their critical 
values for a large aspect ratio, A = 10 (these structures are taken at a fixed time). These spatial structures are obtained 
from the eigenvectors at threshold. If the discretized eigenvector is denoted as X ൌ X୰ ൅ iX୧, the perturbation for k and ω୰ non equal to zero will be given by Ը൫Xe୧ሺ୩୶ିன౨୲ሻ൯ ൌ X୰ cosሺkx െ ω୰tሻ െ X୧ sinሺkx െ ω୰tሻ, where  denotes the real 
part. We see that the four modes shown in figure 4 are clearly different as they have different spatial structures in the 
cross-section. More precisely, modes A, B, C and D have two, three, four and five roll structures in the cross-section, 
respectively. 
  We now investigate the throughflow effect on the critical Rayleigh number for the different dominant modes. The 
critical curves for the first four unstable oscillatory transverse modes as a function of the Reynolds number Re are first 
given for small Re and A = 5 in figure 4. We recall that for Re = 0 these oscillatory transverse modes correspond to 
symmetry degenerate left and right traveling modes. This symmetry is broken by the throughflow, which will 
differently infuence the thresholds of the left and right traveling modes, which, in the following, will rather be presented 
as upstream and downstream modes, respectively.  

The results presented in figure 4 have been obtained for modes traveling in the positive x direction and for 
throughflows either in the positive (Re > 0) or negative (Re < 0) x direction. If we now refer to the direction of the 
throughflow, the results obtained for Re > 0 (Re < 0) will be those associated with the effect of the throughflow on the 
downstream (upstream) modes. When the transverse modes A, B, C and D are considered as downstream modes (Re > 
0), the increase of the throughflow from Re = 0 induces a continuous increase of their critical Rayleigh numbers. In 
contrast, when they correspond to upstream modes (Re < 0), with the increase of the throughflow from Re = 0 (increase 
of | Re| the critical thresholds first decrease, reach a minimum value and then increase more quickly. Note that the 
critical values associated with the transverse mode A remain the smallest in the Re range studied here, indicating that 
this mode A is the dominant transverse mode. Concerning the longitudinal modes (k = 0), they are not influenced by the 
throughflow, so that their critical thresholds do not depend on Re. 

To better see the selective influence of the throughflow on the instabilities, we now compare the critical thresholds 
obtained for the different dominant modes, i.e. the downstream and upstream transverse A modes and the dominant 
longitudinal mode (estimated for k = 0.01). The critical curves for these three modes are plotted as a function of Re (Re > 
0) for three values of the aspect ratio A (A = 3, 5 and 7) in figure 5. For A = 3 (figure 5(a)), the critical curve for the 
upstream transverse mode is below that for the downstream transverse mode and also below the critical value for the 
longitudinal mode (Rac ≈ 1916.6, slightly outside the Rac  range considered in the figure). For A = 3, the upstream 
transverse mode is then the dominant mode and its critical curve is the true critical curve within the Re range studied 
(Re ≤ 0.45). 

For A = 5 (figure 5(b)), the dominant mode in the Re range studied is still the upstream transverse mode. However, 
the critical curve for the downstream transverse mode is now almost in contact with the critical curve for the upstream 
transverse mode for Reynolds numbers in the range 0.1 ≤  Re ≤  0.16. Moreover, the horizontal line corresponding to 
the critical value for the longitudinal mode (Rac ≈ 1821.35) intersects the critical curve for the downstream transverse 
mode at Re = 0.258, indicating that beyond this value, the longitudinal mode is more dangerous than the downstream 
transverse mode. 

Finally, for A = 7 (figure 5(c)), due to different intersections between the critical curves, the dominant mode will 
depend on the value of Re. For small values of Re (0 ≤ Re ≤ 0.09), the dominant mode is still the upstream transverse 
mode. In the range 0.1 ≤ Re ≤  0.19, because of the crossings between the transverse mode curves, the downstream 
transverse mode becomes the dominant mode. The upstream transverse mode is again the dominant mode in a small 

172



range 0.2 ≤  Re ≤  0.22. Finally, for the larger values of Re considered in the graph (0.23 ≤  Re ≤  0.4), the longitudinal 
mode becomes the dominant mode because its critical threshold Rac ≈ 1790.01 is now below the thresholds for the two 
transverse modes.We can expect to find such changes of modes when Re is increased for larger values of A. The Re 
ranges associated to the different modes, however, will change because of the decrease of the longitudinal mode critical 
value and the more important crossings between the transverse mode critical curves. 
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Fig1. Schematic representation of the Poiseuille-Rayleigh-Bénard (PRB) duct flows. 

 
Fig 2. Neutral curves for the first four unstable oscillatory modes in the parameter plane k-Ra for (a) A=5, (b) A=7, (c) 

A=10 and (d) A=15. 
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Fig 3. Temperature eigenstructure for the first four unstable traveling transverse modes at their critical points for A = 10: 
(a) Ra = 1744.38, k = 3.100, ω୰ ൌ 1.932  (mode A), (b) Ra = 1745.90, k = 3.048, ω୰ ൌ 1.935  (mode B), (c) Ra = 
1748.55, k = 2.957, ω୰ ൌ 1.940 (mode C), (d) Ra = 1752.50, k = 2.817, ω୰ ൌ 1.943 (mode D). 

 
Fig 4. Critical curves for the first four unstable traveling transverse modes as a function of the Reynolds number Re 

when A = 5. 
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Fig 5. Critical curves for the dominant upstream and downstream transverse modes and the dominant longitudinal mode 
(k = 0.01) as a function of the Reynolds number Re: (a) A = 3, (b) A = 5 and (c) A = 7. 
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