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Abstract. Unsteady flow of a Jeffery fluid in an elastic tube with stenosis has been investigated. The governing 
equation for the excess pressure is obtained for Jeffrey model. The governing equation has been solved numerically and 
investigations are made for different cases for Straight, Tapered and Constricted tubes. In the absence of Jeffrey 
parameter, our results agree with Ramachandra Rao [2] for Newtonian fluid flow in an elastic tube. We find some 
interesting observations for different parameters on the velocity and excess pressure (the pressure difference between 
the pressure in the fluid and the external pressure). One of the interesting phenomenon of this paper is that, we studied 
different types of pressure radius relations, which warrant further study on the non-Newtonian fluid phenomena in 
elastic tubes. 
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1. Introduction  
An elastic material is one that deforms immediately upon loading, maintains a constant deformation as 

long as the load is held constant, and returns immediately to its original undeformed shape when the load is 
removed. This module will also introduce two essential concepts in Mechanics of Materials: stress and strain. 
A material that obeys Hooke's Law is called Hookean. Such a material is elastic according to the description 
of elasticity and it is also linear in its relation between stress and strain (or equivalently, force and 
deformation). Therefore a Hookean material is linear elastic, and material engineers use these descriptors 
interchangeably. Interruption of blood flow in either the arterial or venous system interferes with the delivery 
of oxygen and nutrients to the tissues. Further, it is realized that unfortunately there are numerous arterial 
diseases which result in the occlusion of blood flow. An appropriate model will assist in the design of a more 
accurate method to detect these diseases. Thus, the study of models for blood flow in an elastic tube has 
became of great interest among many clinicians, physiologists, hemorheologists and mechanical engineers, 
etc. With this interest many authors are concentrating on the flow of biofluid in an elastic tube.   

Rubinow and Keller [1] studied the flow of a viscous fluid through an elastic tube with applications to 
blood flow. Ramachandra Rao [2] studied on the unsteady flow with attenuation in a fluid filled elastic tube 
with a stenosis. Oscillatory flow of a viscous fluid in an elastic tube of variable cross section was also 
investigated by Ramachandra Rao[3].  Sarkar and Jayaraman [4] investigated on nonlinear analysis of 
oscillatory flow in the annulus of an elastic tube. Srinivas et. al [5] studied the effect of slip, wall properties 
and heat transfer on MHD peristaltic transport. Influence of wall properties on the peristaltic motion of a 
Herschel-Bulkley fluid in a channel was studied by  Radhakrishnamacharya et. al [6]. More recently 
Vajravelu et. al [7] studied the flow of a Herschel-Bulkley fluid in an elastic tube. Since the blood is 
frequently referred as a non-Newtonian fluid, Jeffrey model  is preferred by many authors to describe flow of 
physiological fluids in tubes and channels. Vajravelu et al. [8] studied the influence of heat transfer on 
peristaltic transport of Jeffrey fluid in a vertical porous stratum and many authors are now concentrating on 
this Jeffrey model as it is the simplest non-Newtonian fluid model describing some physiological and 
industrial fluids, [9-11]. Among all these investigations it is observed that not much work is done on the flow 
of Jeffrey fluid in an elastic tube. 
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In view of this, the present paper deals with the flow of Jeffrey fluid in an elastic tube with a stenosis. 
Here we are concentrating on the excess pressure and velocity of the fluid flow. Some interesting 
observations made for variation of parameters on the velocity and excess pressure.  

2. Formulation of the Problem 
Consider the flow of blood, which is taken as an incompressible Newtonian fluid, in an elastic tube of 

circular cross section. We use cylindrical polar coordinates ( , , )r zθ  with z axis along the axis of the tube 
and 0 ( )r a s z=  an arbitrary function of z is the radius of cross section at any axial point z , 0a being the 
undisturbed uniform radius of the tube. Under the assumption that the tube cross section varies slowly in the 
axial direction, we have 0 / 1a Lε = << , where L is a characteristic length along the axis of the tube. It 
could be the length of the disturbance due to the constriction extending on either side of it or an appropriate 
wave length. Making use of the unsteady lubrication theory, Ramachandra Rao [3], the equations governing 
the motion of the fluid in the tube are 
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Where u, w are the velocity components in r and z directions respectively, 0ρ is the density of the fluid, ν is 
the kinematic coefficient of viscosity and p is the pressure. The equation of continuity is 
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The other equation for the radial displacement ξ is given by 
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Where h and ρ are the thickness and density of the material of the tube and 
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− , E is the Young’s 

modulus and σ is the Poisson’s ratio. The boundary conditions for the motion of the tube and the tube are 
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Where 0a the radius of the tube without elasticity, L is the length of the tube. We assume that 
0a

L
ε =

 is 
small for a tube with slowly varying cross-section. 
The non-dimensional quantities are: 
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Where U0 is the characteristic velocity and ω is the frequency of oscillatory flow. 
Introducing the above non-dimensional quantities, neglecting ε and higher order terms completely and based 
on the assumption that the flow is steady oscillatory, we take  
( , , , ) ( , , , )itu w p e u w pξ ξ=                                    (7) 
Then Eqs.(1) – (5), become 
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is the excess 
pressure on the wall of the tube. From (13), the pressure is a function of z alone and it is taken as the excess 

pressure ep on the wall. The solution (14) satisfying the condition (16) is 
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Where 
2 , ( )ni J zλ α= −  is a Bessel function of first kind order n, and 0ep p p= −  is the excess 

pressure, 0p is the undisturbed pressure with its hydrostatic distribution, is a function of  z alone. The flux 
across any cross section of the tube is given by 
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The non-dimensional equation of continuity for longitudinal motions influenced by area changes, Lighthill 
[12], is 
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Where A is the cross sectional area at any axial point of the tube. The elastic tube is assumed to be tethered 
against longitudinal displacements. In general the pressure p at any point is a function of area A (z, t), z and 
time t. The elasticity of the wall is introduced into the problem by a relation between the excess 

pressure 0p p−  the transmural pressure of an artery, and area A which is assumed to be known. Such 
pressure-radius relations for thick and thin walled tubes satisfying the boundary conditions at deformed or 
undeformed points have been listed by Taylor and Gerrard [13] and Kurz [14]. Further we know 
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Where c(z) is the local value of the wave speed in the tube  and  is the density of the fluid, Lighthill [12]. 
From (22) and (23), we have 
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Using (20) and (24) in (21), we get 
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Ramachandra Rao [3] has derived an equation similar to (25) using shell equations for a thin walled elastic 
tube and is given by 

2
2

1 1 22

2 2 * 0e e
e

d p dpdSa S a p
dz S dz dz

λ+ − =
                   (18) 

Where,

2 2
2 0 0

1 2
0

* w L a
C h

ρλ
ρ

=
, ρ is the density of the tube, h is the thickness of the tube, 

2 2
0 , / (1 )BC B E σ

ρ
= = −

, E being the Youngs modulus and σ is the Poisson ratio. Further we may write 
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Where 
2

1 0 0/ 2c Bh aρ=  is the classical Moens-Korteweg speed, Pedley [15]. We list below few of the 
pressure-radius relations for thin walled elastic tubes, these have been used in numerical work afterwards, 
given by and Taylor and Gerrard [13] and Kurz [14] 
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It can be easily observed that Eq. (27) can be derived from (25) by substituting the expression for 
2c  as 

calculated from (8) using the pressure-radius relation (i). Thus Eq. (27) for excess pressure is more general 
and is valid for a wider range of conditions. Further, it is clear from the pressure-radius relationships listed 
that the local value of the wave speed 

2 ( )c z  at any axial station is expressible as 
2

1 / ( )c F s   where ( )F s   is 
a function of s depending upon the pressure-radius relation chosen. The Eq. (10), in general is written in the 
form  
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     Where the parameter aλ  defined in (29) is a ratio of Lω , the velocity coming through the flow 

and geometry to the Moens-Korteweg speed. It appears that aλ  plays crucial role in these types of problems 
and the importance of this parameter is still to be established through experiments. The approximate equation 
for excess pressure for Womersley parameter large is given by 
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The excess pressure given by (36) is complex, by writing e r ip p ip= + , and equating real and imaginary 

parts, we obtain two coupled ordinary differential equations of second order for rp and ip . These equations 
are rewritten as four first order equations and are solved using Mathematica by prescribing the initial 
conditions at some point z of the axial section of the tube. In our problem we have chosen the initial point as 
z = 1 and the upper boundary for z as 10 for all the geometries of the tubes considered. The modulus of 

pressure ep  has been evaluated for a) Straight tube given by 1,1 10,S z= < < b) Tapered tube given by 
( ) exp( 0.025 ),1 10S z z z= − < < , c) Locally constricted tube given by 

21 0.5exp( ( 6) ),1 10.S z z= − − − < <   
The initial conditions are taken as  

139



0.1, 0, 0, 0.01 0ir
r i

dpdpp p at z
dz dz

= = = = − =
           (22)

  

3. Results and Discussions 
We study the flow of a Jeffrey fluid with stenosis in an elastic tube. Here the effects of Jeffrey parameter, 

external pressure, pressure radius relations and the elastic nature of the tube are explained in detailed as 
follows.  

From Fig - (1) we observe that as the Jeffrey parameter increases , the effect of external pressure in 
decreasing for a tapered tube. Fig - (2) shows that for an increase in the Jeffery parameter, there is a decrease 
in the effect of external pressure for a linear tube. If the tube is locally constricted, we notice that as the 
Jeffrey parameter increases, the effect of external pressure on the fluid flow is decreasing, which is shown in 
Fig - (3). Fig - (4) and Fig - (5) shows the variation of external pressure with z for different pressure radius 
relations (i), (ii), (iii), (iv) and (v) for a locally constricted tube and tapered tube respectively. If the pressure 
radius relation is of the type (i), the external pressure will be high for both the locally constricted tube and for 
a tapered tube i.e. the high external pressure gives rise to a low flow rate and if the pressure radius relation is 
of the type (v) the flow rate will be more due to low external pressure for both the locally constricted tube 
and for a tapered tube. 

From Fig - (6), we observe that flux increases as the Jeffrey parameter increases. We notice from Fig - (7) 
that as the Jeffrey parameter increases the velocity is increasing. Figs. (8, 9 & 10) shows the variation of 
external pressure with z for different values of  for a tapered tube, Locally Constricted and for a linear 
tube respectively. We notice from these graphs that as  increases, the pressure oscillates more. In 
particular if  takes the values 0.707 and 1.414, there is not much change in the amplitude of the pressure 
propagation for a tapered tube and for a linear tube. Also there is a change in the magnitude of the pressure 
propagations for the tree types of the tubes. But it is observed that there is not much change in the external 
pressure wave propagations if   takes the values 0.1 and 0.2 for all the three different types of tubes. 

4. Conclusions 
We study the flow of a Jeffrey fluid with stenosis in an elastic tube. Here the effects of Jeffrey parameter, 
external pressure, pressure radius relations and the elastic nature of the tube are explained in detailed as 
follows.  

 As the Jeffrey parameter increases, the effect of external pressure in decreasing for a tapered tube. 
 Increase in the Jeffery parameter, there is a decrease in the effect of excess pressure for a linear tube.  
 If the tube is locally constricted, we notice that as the Jeffrey parameter increases, the effect of 

external pressure on the fluid flow is decreasing. 
 If the pressure radius relation is of the type (i), the external pressure will be high for both the locally 

constricted tube and for a tapered tube i.e. the high  
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Fig 1: Variation of external pressure 
with z for different values of the 

Jeffrey parameter 1λ , for a tapered 
tube 

Fig 2:  Variation of external pressure 
with z for different values  of the 

Jeffrey  parameter 1λ , for a straight 
tube 

Fig 3:  Variation of external 
pressure with z for different values of 

the Jeffrey parameter 1λ , for a 
locally constricted tube 
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Fig 5:  Variation of external pressure 
with z for  different pressure-
radius relations for a  tapered 
tube 

Fig 6: Variation of flux with radius 
for          different Jeffrey parameters
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Fig 8: Variation of external pressure 
with z for different values of elastic 
parameter for a tapered tube 

Fig 9:  Variation of external 
pressure with z for  different 
values of  elastic parameters for a  
 locally constricted tube 
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Fig 10: Variation of external pressure 
with z for different values of elastic 
parameters for  a linear tube. 
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