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Abstract. Measurement of velocity gradient near the wall and wall shear stress for air- water two phase flows 
through pipe is reported. The measurements are carried out using hot film anemometer. Mean and time varying 
fluctuation of the local wall shear stress and velocity of the horizontal air-water two-phase flow is measured using 
TSI 1210-20W hot film. Measured wall shear stress distributions are found to be strongly influenced by the 
condition of gas-liquid interface. Results reveal that an increase in water flow rate increases the wall shear stress 
while the variation of wall shear stress with air flow rates is negligible. The data collected is utilized to obtain time 
averaged value of shear stress for the fluctuations. The axial velocity distribution is measured by traversing the 
probe in radial direction. 
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1. Introduction 
Air-water two-phase flow involves complex shear stress mechanisms which are very difficult to correlate. 
Shear stress models generally rely on a number of basic assumptions and empirical closure equations. Taitel 
and Dukler [1] first presented a shear stress model based on momentum balance of the gas and liquid phases. 
Andritsos and Hanratty [2] reported that liquid-wall shear stress is better predicted via a characteristic stress 
τC (taken as the weighted average of liquid-wall and characteristic stress). According to the authors, the 
characteristic stress can be calculated from a dimensionless liquid height, which is a known function of the 
liquid Reynolds number.  Early works for the measurement of shear stress was limited to two-phase flow 
through the rectangular channels (Davis [3], Fabre et al. [4]).  

    A variety of techniques have been used to measure wall shear stress. Direct measurements of average wall 
shear stress by measuring the restoring force are reported by Cravarolo et al. [5] and Kirillov et al. [6]. 
However, most researchers have used indirect methods based on the analogy between momentum transfer 
and mass transfer (e.g. Cognet et al. [7]) or heat transfer (e.g. Whalley and McQuillan [8]). These methods 
however cannot produce the fluctuations in wall shear stress. In order to obtain fluctuating component of 
shear stress, hot film probes are utilized. Kowalski [9] has presented measurements of the wall shear stress 
for circular pipe at various radial locations in the gas region, and has concluded that existing models for 
estimation of the gas wall shear stress seem to be adequate.  

The shear stress relation is essential as closure to the analytical model. An experimental investigation to 
establish the wall shear for air-water two-phase flow through pipe is presented in this paper. The wall shear 
stress and the velocity gradient in the radial direction in both the phases is measured using hot film 
anemometer. Experimental values of wall shear stress are plotted as functions of gas and liquid superficial 
Reynolds numbers and are is then utilized in obtaining two-phase skin friction coefficient.  

2.  Experimental Methodology 
    The established experimental setup (Fig 1) is discussed in an earlier paper by the authors [10]. The 
experimental setup consists of air-circuit, water circuit, flow visualization section and measuring section. 
The measurement section consists of pressure and temperature measuring sections. Hot film anemometry is 
utilized in predicting wall shear stress and measuring the velocity profile in radial direction. An attachment is 
prepared having provision of traversing the probe. The attachment consists of SS pipe with flange 
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connections at both the ends. Two micrometers are provided, one on the upper side and other on lower side 
of the pipe through which probe passes. In addition there are glass windows on front and back side (Fig. 1). 
The Hot film anemometer used here is a Constant Temperature Anemometer (CTA) which works on the 
principle of fluid convection. Probe voltage is measured by CTA IFA300 manufactured by TSI.  

 
1. Storage Tank 7. Screw compressor 13. Pressure measurement section
2. Centrifugal Pump 8. Pressure regulator 14. Hot film attachment 
3. By-pass line 9. Orificemeter/Rotameter (air) 15. Air vent duct 
4. Ball valve 10. Mixing/Calming zone 16 and 17. Return line 1 and 2 
5. Gate valve 11. Visualization zone 18. Line to the storage tank 
6. Rotameter (water) 12. Heat transfer section P1, P2 Pressure transmitters 

 
Fig. 1 Schematic of experimental setup along with Hot Film Probe 

3.  Calibration 
The calibration program has three steps: (1) Inserting probe data, (2) Generation of auto calibration table 

and (3) Condition set up.  The first step involves specification of probe data related to probe type, cable 
resistance, operating resistance, wire film, offset and gain. This is followed by the generation of an auto 
calibration table by selecting the minimum and maximum velocity and number of points. The values of 
velocity and corresponding value of dP in mm Hg is presented in the auto calibration table. The value of dP 
is inserted and bridge voltage E is acquired. Calibration curve obtained by this procedure is as shown in Fig 
2. Curve fitting is done using polynomial of second order for velocity as shown in figure. Calibration for 
shear stress measurement is carried out by allowing single-phase (either water or air) in to the test section. 
Mass flow rate corresponds to the value of shear stress is fixed by controlling the ball valve. Similar to the 
velocity calibration, the corresponding mass flow rate is calculated and fixed by controlling the ball valve. 
The probe is maintained at constant temperature by a standard hot-film anemometry circuit. A laminar 
thermal boundary layer grows on the probe in the direction of flow and the instantaneous average heat 
transfer coefficient for the probe is proportional to the heat flux which is in turn proportional to the square of 
the voltage drop, E. In an ideal developing laminar boundary layer, the heat transfer coefficient is 
proportional to τ1/n. Shear stress calibration curve obtained for the air and water medium is shown in Fig 2 
along with the curve fitted equations.  In two-phase flow there is a wall liquid film which is sufficient for the 
wall shear stress probe operation. Therefore, as shown by Martin [12] and Whalley and McQuillan [8], the 
probe operation in single-phase and in two-phase flows is essentially the same. The instantaneous wall shear 
stress is determined from the instantaneous bridge output. Mean values of the shear stress can then be 
obtained by  

Mean
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   In order to eliminate uncertainty resulting from the hot film sensor drift, the consistency of single-phase 
flow anemometer output is frequently checked with the calibration data.  
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Fig. 2
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6.  Closure 
 

    Hot film anemometry is utilized to measure wall shear stress and axial velocity at discreet radial distances. 
Axial velocity distribution for the considered Reynolds numbers shows symmetric variation in gas phase. 
Maxima of gas phase axial velocity shifts toward the upper surface with the increase in gas superficial 
Reynolds number. This causes the formation of small waves on the gas-liquid surface. Transient fluctuations 
of wall shear stress observed for various flow patterns represent the behavior of different flow regime. 
Significant enhancement in mean liquid wall shear stress compared to gas wall shear stress is observed for 
stratified and wavy flow regime with the increase in gas and liquid superficial Reynolds number. This is due 
to the viscosity difference between the fluids. These time averaged wall shear stress of stratified, slug and 
wavy flow (limited Reynolds numbers) are utilized in obtain the variation of wall shear stress with two-phase 
friction factor for different gas and liquid superficial Reynolds numbers. For the annular flow, wall shear 
stress variations follow a linear behavior with gas superficial Reynolds number and a non-linear pattern with 
liquid superficial Reynolds number. 
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