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Abstract. The circular hydraulic jump in the presence of a soluble surfactant can display unexpected static 
ripple features in the inner super-critical flow region.  These ripples are likely capillary surface waves pushed 
inward from the region of the hydraulic jump by surface tension gradient Marangoni stresses, therefore able 
to exist in a region thought to be without surface features.  The additional surface drag requires modifications 
to the Watson theory of circular hydraulic jumps in order to predict jump location and inner ripple radius.  
We have developed a first order correction to the theory that qualitatively explains the surfactant 
concentration on the location of the jump and the inner ripple ring; the theory shows reasonable agreement 
with experiment. 
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1. Introduction 
The theory of the circular hydraulic jump is well studied.  Raleigh[1] did early work on inviscid models, 

Watson[2] considered the effects of viscosity, while Bush and Aristoff[3] provided corrections for surface 
tension.  Others have attempted to model the circular hydraulic jump in terms of simpler scaling arguments, a 
comprehensive study of which can be found in Khavari, et. al.[4]  Though the fundamental problem might be 
considered to be effectively understood, there are still unresolved issues.  Much of the focus since the late 
1990's has been on the formation of stable polygonal structures for certain parameters of the fluid flow rate 
and viscosity[5].   

The original intention of this experiment was to develop careful measurements of the radius of the 
hydraulic jump as a function of flow rate, and possibly include this experiment as one of the intermediate 
physics lab exercises at the College.  One of the first undergraduate students working on the equipment 
design found it challenging to completely wet the surface of the Plexiglas disk, and tried adding soap 
solution.  He noticed a difficult to resolve inner ring, and reported it at the Midstates Consortia 
Undergraduate Research Symposium[6].  After improving the equipment, is was possible to resolve the inner 
ring more clearly, as in Fig. 1. 

Fig. 1: Dotted circles are at 0.5 cm, 1.5 cm, 2.5 cm, etc.  The hydraulic jump is at 3 cm and the Marangoni ring/ripples 
at 2 cm, which is well inside the super critical region. 
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With additional measurements, it was concluded that the effect was a result of the surfactant, and not 
simply the reduced surface tension or of any interactions between the fluid mixture and the horizontal 
impingement Plexiglas surface.  This inner feature was originally thought to be a weak hydraulic jump, 
which would violate naive models of energy conservation in a hydraulic jump, since the flow both before 
and after the jump was super-critical.  It is now thought that these ripples are Marangoni stress induced 
ripples, with a consequence that much of the Watson theory requires modifications.  Though Bush and 
Aristoff point out that surface tension gradients will complicate results, neither they nor any other group 
appear to have noticed these ripples. 

2. Theory 
The original Watson[2] paper was based on the assumption that the fluid flow consisted of radial 

velocity ( , )u r z and vertical velocity ( , )w r z , and that there was no angular dependence to the problem.  We 
outline the Watson approach below.  The goal was to find fluid depth ( )h r  as well as the velocity profile. 
The flow rate would be given by 
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By direct application of equations for conservation of fluid flow 
 ( ) / ( ) 0,ru r rw z∂ ∂ + ∂ ∂ =  

the Navier-Stokes Equation 
 2 2( / ) ( / ) ( / ),u u r w u z u zν∂ ∂ + ∂ ∂ = ∂ ∂  

and boundary conditions for the top and bottom surfaces of the circular outflow region 
 0 at 0 and / 0 at ( ),u w z u z z h r= = = ∂ ∂ = =                  (1) 

and assuming a self-similar solution of the form ( , ) ( ) ( )u r z U r f η=  where /z hη = , Watson was able to 
find unique solutions for ( )U r  and ( )h r given by 
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with c  a numerical constant, and l  is determined by boundary layer growth.  The appropriate )(f η  was of 
the form of a Jacobian elliptical function.  Henceforth, we will write wu as the Watson solution. 

The condition for a hydraulic jump is found by selecting a control volume and balancing forces against 
momentum flux 
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Watson ignored surface tension; Bush & Aristoff[3] include it, the result is then an expression for the 
jump location 

2 2 2

32
0 1

2 0.016761
2 0.1826

j

rjj
a Re

r d ga a
Q B r dπ ⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
+ + =⎜ ⎟

⎝ ⎠ +
    (3) 

Surface tension effects (at the location of the jump), are determined by the Bond number, 
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At this point we diverge from Watson with additional physics.  Our approach is to observe that the flow 
divides into two parts in the region after the ripples, where j ir r r> > .  The boundary conditions of Equation 
(1) are modified such that 

 0 at 0, ( ) and / 0 at ( )s tu w z z h r u z z h r= = = = ∂ ∂ = =  
where sh  is the new surface height, and th is the height at which / 0u z∂ ∂ = .  For fully developed flow, 
there will be no mass flux or momentum flux across the th  boundary.  We assume that this restriction for no 
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mass flux or momentum flux also occurs during the boundary layer growth off of the top surface as well as 
for the fully developed region.  As such, the new self-similar solution for lower and upper flow is given by 

 ( )  if  and ( )  if s
l t t u t t

t s t

h zzu U r f z h u U r f z h
h h h
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where tU is the fluid velocity along the curve defined by tz h= .  The form of )(f η  is identical to the 
Watson solution.  Conservation of fluid flow requires 
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Combining, we find 2
t s wh h h= , where wh  is the original Watson surface height.  We also require that the 

boundary layer grows off the top surface in such a way as to not affect the behaviour at the bottom surface 
with respect to the original Watson flow wu , so that 

 0 0/ | / |w z l zu z u z= ==∂ ∂ ∂ ∂  
with immediate consequence  /t w t wU hU h= . 

Finally, we define the height layer xh  to be the continuation of the th  transition line for fully developed 
flow.  By symmetry, 2s xh h= .  Then 

2  and / 2s w x wh h U U= =                                                                                                                   (4) 
with wU  and wh  defined by the original Watson equations, Equations (2).   Most of these features are 
illustrated in Fig. 2. 

 

Fig. 2: Flow depth and velocity profiles for original Watson and modified flow in presence of surfactant. 

Once the hydraulic jump is located it is possible to consider the location of the inner rings.  To do this we 
balance the Marangoni stresses associated with the varied surface tension against the viscous drag on the top 
layer, following the example as presented for fluid pipe by Hancock and Bush[7]: 
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Though difficult to integrate, the solution will be of the form 
 2 ( )( ) / ,i j i j i c cr r r r r u yπ σ π ρνΔ ≈ + −  

where cu  is some characteristic speed, and cy some characteristic depth in the region between the inner 
ripple and the jump.  It is reasonable to assume that c xy h≈  and c xu U≈ , as found in Equation (4).  These 
quantities are not constant, but an order of magnitude estimate can be obtained by selecting the minimum h  
and maximum U , which are on the order of 100μ m and 1.0 m/s, respectively. 

A more difficult estimate comes from trying to determine σΔ , the change in surface tension at the 
location of the inner ripples.  We can start with a measure of surface tension in the presence of a surfactant[8] 

 0 ( ) / 2bRT c c hσ σ= − −  
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where R is ideal gas constant, T is temperature, c is volume concentration of surfactant, bc is bulk 
concentration, and h  the fluid thickness.  h  changes rapidly from 2≈  mm to 200μ≈ m on a time scale 
much faster than the diffusion of the surfactant, so the bulk concentration is effectively constant.  As such, 
the correction to the surface tension before the ripples is at least a factor of ten smaller than the correction of 
the surface tension after the ripples.  We can then assume that 

 ( ) / 2 ln(1 ),b ad
RTRT c c h K cσ
ω

Δ = − = +  

with ω  and adK  constants, an expression known as the Szyszkowski equation.  For sufficiently large 
concentration, we then expected 
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with A  and B  constants. 

3. Experiment 
A 30.5 cm long stainless steel tube with a 0.72 cm inner diameter and a 0.92 cm outer diameter was used 

to project a stream of water vertically downward onto a horizontal flat circular disk of acrylic Plexiglas.  The 
edges of the disk were rounded to allow the water to flow smoothly over the sides.  Originally large diameter 
neoprene O-rings of various thicknesses were to be used to control water depth far from the point of 
impingement, but it was found that a relatively constant depth could be maintained without the rings.  The 
disk was supported by three adjustable screws threaded in an aluminium disk for levelling.  The position of 
the disk beneath the source tube could be varied between 0 cm and 25 cm.  The shortest distance that was 
used for data collection was 5 cm. 

Water was supplied to the source tube through a meter of flexible hose with 1.3 cm inner diameter 
connected to a large 25 litre reservoir of water positioned so that the height of the top water surface was 95 
cm above the disk when the distance between the disk and the stainless steel tube was 10.9 cm.  A needle 
valve was connected to the other end of the hose and the valve and the stainless tube was connected by 
another meter of flexible hose with 0.92 cm inner diameter.  The valve is used to control the flow rate in a 
more exact fashion.  The water head height was controlled via an overflow tube from the reservoir.  A return 
pump recycled the water when the concentration of the soap solution needed to remain the same. 

In general there were two different procedures of making the measurements depended on which feature 
was unchanged.  The easier procedure was keeping the concentration of the soap solution constant.  In this 
procedure the needle valve was first turned to the maximum and then adjusted to where the water flow was 
stable.  At this point, the radius of the jump was about 3.5 cm to 4 cm.  Then a measuring cup was used to 
hold water and a stop watch was used to measure how long it took to fill the cup.  After that, a graduated 
cylinder was used to measure the volume of the water that was in the cup.  This process was repeated five 
times in order to eliminate the error while measuring the flow rate.  The radius of the jump and the inner ring 
was roughly measured by a ruler for future reference and a picture was taken to make more exact 
measurements of the radii.  The soap solution that was left in the container would be pumped back to the 
reservoir in order to keep the same concentration.  The next step was adjusting the needle valve to obtain a 
smaller flow rate.  An elimination of 0.3 cm in the outer jump was a reasonable step size.  Repeat the whole 
process until the radius of the outer jump reached about 0.7 cm. 

The other procedure was more time consuming.  The general step was still the same as the former one 
with two things different.  First, the needle valve will be adjusted at the very beginning such that it could 
form a jump that was around 3 cm and after that the needle valve would remain unchanged in order to keep a 
constant flow rate.  Second, the water would not be recycled after every set of data collection but would be 
pumped out of the system.  Fresh water would be added after each run with an increasing amount of soap 
having a step size of 5 mL.  The reason for refreshing water after every set of data was to reduce the amount 
of foam.  A huge amount of foam would result in a decrease in soap concentration and thus reduce the 
accuracy of data. 
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After all the data were collected, they would be entered in a spreadsheet for various calculations.  A 
program called PixelStick was used to measure the radius of the jump and inner ring directly off of the 
digital photographs.  The way it worked was when taking the pictures in lab; a sheet of plastic paper was 
placed on the disk with concentric circles that varied 1 cm in radius with each other.  By using PixelStick, 
how many pixels was 1 cm could be determined and then used as a ruler for measuring the diameter to 
within 5 % for the down-flow, and within 0.5 % for the ring radii. 

Water depth in the super-critical region of the hydraulic jump was measured by a 1950's era machine 
shop depth gauge, with an accuracy of 1/2000 of an inch.   

Flow rates were kept below the level of turbulence in the pipe; in general, the Reynold’s number Re was 
less than 8000.  As such, the pipe flow was assumed to be Poiselle in nature.  The distance between the pipe 
outlet and the surface was usually kept fixed at about 11 cm, and it was expected that the fluid flow from the 
pipe had transitioned to uniform flow by then. 

4. Results 
The results for the hydraulic jump radius jr , location of inner ripples ir , and difference j ir r−  for 

varying soap concentration are shown in Fig. 3.  The slight outward shift in the location of the hydraulic 
jump is expected by the correction for surface tension according to Bush; the data for pure water is 
somewhat unreliable, owing to bubbles which would accumulate in the source tubing and difficulties in 
wetting the surface.  The difference between the jump radius and inner ripples, j ir r− , agrees well with a 
logarithmic dependence on soap concentration, as expected from Equation (5). 

 

Fig. 3: Hydraulic jump radius jr , location of inner ripples ir , and difference j ir r−  for varying soap concentration. 

The hydraulic jump locations in this flow regime agrees fairly well with the correction for surface 
dragging, as shown in Fig. 4, though the results are still off from the modified theory by an amount on order 
of the same 50 % as the previous graph.   

Fig 4: Hydraulic jump location predictions compared with actual measurements.  This is a plot of the left hand side of 
Eq. (3) on the vertical axis against the dimensionless parameter 1/3/ Re

j
r a  
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The fluid depth does grow rapidly after the inner ripples rings, as shown in Fig. 5.  The depth is some 
50 % deeper than even the correction, implying that the model that ignores the mass and momentum transfer 
during the boundary layer growth is insufficient to explain the full phenomena.  That missing 50 % is likely 
to affect the correction to the jump radius location, as the deeper water would mean that the jump would shift 
because of increased interior pressure, and slower flow. 

 

Fig. 5: Depth measurements, compared with Watson formula predictions for wh .  The significant increase for 2r >  cm 
corresponds to the region between the Marangoni ripples and hydraulic jump.  The hydraulic jump is actually visible in 

this data, and occurs at about 4r = cm. 

Continued work is needed.  Measurements of surface tension are very difficult, and the theory of soluble 
surfactants is complicated.  Comparison with other surfactants, particularly pure Sodium Dodecyl Sulphate 
as opposed to industrial dish detergent, will occur soon.  Finally, it is necessary to properly deal with the 
boundary layer growth and the integrals for the surface tension forces. 
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