2009 International Conference on Machine Learning and Computing
IPCSIT vol.3 (2011) © (2011) IACSIT Press, Singapore

Correcting Noisy Ciphers in CBC mode

Nabil Mirza!, Ziad Osman *, Rached Zantout *, Mohamed El-Sayed

! Electrical Engineering Department, Beirut Arab University, Debbieh, Lebanon
?Electrical Engineering Department, Alexandria University, Egypt

Abstract. Correction of noisy cipher is a challenging task. Previous work has been done on correcting
noisy ciphers using AES in ECB mode. In this paper, error detection and correction is done at the receiver
end, without any changes to the encryption algorithm that uses AES in CBC mode. A property of CBC is that
noise affecting one encrypted block will affect the corresponding decrypted block and its neighbor. This
property is exploited to identify the noise vector that contaminated the encrypted message. For a specific
corpus the space of all possible messages (Datagram book) is modeled. The noise-free neighbor of the noise
contaminated decrypted data is used to generate multiple possible candidates. The candidates are then
compared to the Datagram book to identify the noise-free block.

Keywords: CBC, Error Correction.

1. Introduction

The importance of the problem of error correction of encrypted data at the receiver end stems from the
wide range of areas in which this problem exists. One of the areas in which error correction is important is
secure file storage systems where the user encrypts a file, stores the encrypted version, and destroys the
original [1, 2]. In block cipher cryptosystems with good diffusion, flipping an input bit should change each
output bit with a probability of one half [3]. This means that a one bit error in the encrypted block will alter
nearly half the bits in the corresponding decrypted block. In block ciphers that use the ECB mode, error
correction is done by exploiting a property of the encryption algorithm that any encrypted block has a large
Hamming distance from any other encrypted block and in some cases relying on information about the noise-
free neighbors of the contaminated block [4, 5]. AES operates with 128 bit block sizes. Messages longer than
AES's input block size are handled using CBC mode of operation. In CBC each block is first xored with the
previously encrypted block. Then the result is encrypted with the symmetric key. This means that each
encrypted block is dependent on the previous block. The properties used in [4] and [5] cannot be exploited in
block ciphers using the CBC mode. In [4] the error correction relies on the encrypted noisy message. In [5]
the correction relies on information from neighboring blocks which are not contaminated by noise in ECB
mode.

In this paper, ciphertexts are assumed to have resulted from encrypting plaintexts using AES with a
symmetric key of 256 bits. A closed corpus is used to generate a Datagram Book which is the collection of
all possible 8 character strings that occur in the corpus. Noise that contaminates one encrypted block
generates two decrypted noisy blocks, the block corresponding to the encrypted noisy block (block A) and its
immediate neighbor (block B). Block A is contaminated beyond recognition while block B has the same bit
positions in error as the contaminated encrypted block. The immediate neighbor of block B is used with the
Datagram book in order to generate a list of possible corrections. Each member of the list is used to predict
the noise that contaminated the original encrypted block. One of the possible corrections leads to a
combination of corrected blocks A and B that exist in the Datagram book.

In part 2 the method used to correct the noisy cipher is outlined. In part 3 simulations are presented
proving the validity of the search criteria. Part 4 concludes the paper with a summary of the work and

411

recommendations for further research.

2. Method Description

The Datagram book used is a listing of all unique blocks in a closed corpus. It contains 33632 unique
entries. Figure 1 represents a schematic diagram of the receiver end that describes the approach for error
detection and correction of noisy CBC cipher.

Random @e
Neise Noisy
plaintext Language Recognizer
with error detector
S D
Nolsy ¥ .
ciphertext

Error-Free

Corrected plaintext Block Plaintext

Previous; Left Block No yBF ck Next; Right Block

hEhh R

\
Left Blocks Right Blocks = I

| | Datagram Book
Datagram . =i
Recognizer d

Figure 1. Error detection/correction of noisy cipher

The Language Recognizer with error detector module detects noisy plaintext blocks. It receives a block
of 8 characters and checks whether any of those characters is invalid. The block containing invalid
characters (Block A) and its successor (Block B) will be contaminated by noise. The successor of Block B
(Block C) is used to guide the search for the noise-free block in the datagram book, as shown in Figure 1.
Bits 1 through 7 of block C are used with the datagram book to extract nominees for bit 8 in Block B. Bits 1
through 6 of Block C and each of the nominees for bit 8 in Block B are then used with the datagram book to
generate nominees for bit 7 of Block B. This is repeated with a decreasing number of bits from Block C and
increasing number of nominees for Block B. Each resulting nominee is xored with Block B to generate an
error vector. The error vectors are then xored with the noisy cipher of block A to generate a list of possible
noise-free ciphers. This list is then decrypted and compared with the datagram book to come up with the only
possible solution.

3. Results

Software was written in Visual Basic. Net v9 to simulate the method described in part 2. Figure 2 shows
three blocks A, B and C. The first row shows the encrypted blocks that were obtained by using AES in CBC
mode on the blocks shown in the subsequent rows. The second row shows the actual characters of each block,
while the third row shows their Unicode representation in hex. The fourth row shows the actual text as it
appears in the corpus for the whole message.

] Block A _Block B] Block C
Cipher blocks [Hex) | CPA3CEECEE9DDE1SA0EEF74FE3FFFIG l4ESDSBBSSCEBAECDMDMEAEMD48[:2. OEB405C1 DESE74E2ECETD1EACEERALEE |
Plaintext blocks (Unicode) [oJf &l 5 wsT
Plaintest blocks [Hex] | 064 0R270628064C00200623064E0644 | DRSO0E4A06450R4C0020062806500645 | DB4E 062700200643064E 0627 0G46054F

Plaintest [Unicode) :_‘]15 1_4,1 ,\;g:'.[:_ﬁ
Figure 2. Decryption of noisy free blocks in CBC mode

Figure 3 shows the same three blocks when the cipher of block A was hit by a 1 bit noise (i.e. 1 bit of the
cipher of block A was changed). When decrypted, block A was hit by so much error that it was totally

412

different from the noise-free decrypted version in figure 2. However, the decrypted block B was hit by only a
1-bit error.
Block A Block B Block C
Cipher blocks (Hex] | C7A3C58C5E3D DE3ADEEF74FB3FFFO15 | 4E9D9BB5ICIBAE COAJOD4RASIAAD 46T, | DF B405C1 DBSE74B2BCA1 DEACEERAAR:
Plairtest blocks [Unicods | | I0mm ol ’UE r
Plaintest blocks (Hex | | C52F 3080 99270BFA7SCB0B 7FOCEIFFFD | 0S00G440645264C0020062806500645 | DB4E 0E2700200543064E 06270545054

raen i) [JI0000 OIS Lo o

Figure 3. Case of a 1-bit error noise

Figure 4 shows the same three blocks hit with 10 bit noise. The procedure described in section Il was
applied to generate the blocks shown under "Plaintext Candidates". 158 candidates were produced in the
example given in Figure 4. Each block was then xored with the plaintext block B to generate the noise
vectors shown under "Noise Vector Candidates”. Each noise vector was then xored with the noisy cipher of
block A to generate the list under "Cipher Blocks Candidates". Each of those candidates was then decrypted
to produce new block A and block B candidates. The results are shown under "Decrypted cipher text (Block
A)/Plaintext candidates (Block B)". Only one candidate (id 8804 in Figure 4) was found in the datagram
book which was the correct choice.

Block A Block B Block C
Cipher blocks [Hex) |C7A3ES8C5ESDDET5R0EEEROFBFFESY) 4EIDIBBEICIBAECDALO04565344D 4607 OEB405C1DBAE74B28 C101 EACHERAASE
Plaintest blacks (Unicodz) | Dot ET
Flainkest blocks (Hex] | FFFDDR4T7IR4EZ33AAREF AFFRCAADGE | DBSO0BEADEAGR4400I0ME0ER40405 | DRAE0R2700200543064E 0R270R4054F

Plamtext Candidates Nois

tor Cadidates Cipher Blocks Candidates

Blook B (Plain| Blotk a1} / Biock B (Plain) Blook A (Cipher)

Id Test k2 d Tent Fo- d Text 2
4 SRELES 0524065206 2FDB4F 1R480527 00200645 4 WELS 790038008A000B0078061 34074064002 i b BRERS BFAIDDACI43D0515CE BF4FFIFIFS1S

5893 0B2E0B4F0E30064F 06400627 00200645 5833 | 7E0025007500080073061 34074064002 5893 | BAA3COBC2B900515C8EOFB4FFIFIFITE

25547 | 06300640631 064F 06480627 00200645 2554?.EUUUZ4UUF4UUUBUU?EUE134074054002 .2554?.A?ASUEEZ&EIDD515EEEEF84FF3FSFEH5

23305 0641 064ED631 D64F0E400627 00200645 23385.11002400740008007808134074054002 .23385.DSASEWSEZASDDST5CEE8FB4FF3FSF915

24339 | 0643064F 0631 064F0E48052700200645 24338.1300250074000800?808134074054002 24339 | D4A3C0AC2490 051 SCOEAFB4FFIFIFS

.18151 (1B28064E 0539064 05480627 00200645 |8+ 18151 .78002400?@00800?805134074054002 b 18151 | BFAICIBC2290DG15CAEEFBAFFIFOFIIE | »

1:292:5 23:9 24:14 5532 56:75 +7:109 »8: 158
Mo of Blocks: 158

CJ CCrrrre

Noof Blocks: 158 Noof Blocks: 158

Decypted cipher text (Block A) / Plaintext candidates (Block B)

Id Teut Test Hex Hex fi
8804 | DG4E0RZFORZA0GACON200E6Z306B4E0644 | SIS | (RGO0G4A0B4S0R4CI0200E2B0R500545 | o s

323 | TATIE4OCEISIEDIGFCOFFAFCTACER2Y | DOOM (G4405500543064E00D00G2006500645 | m'l
9754 .9E3E3E5092?0811AFFFD5E923F271958 .[I]I]]II] (G4FOR4G0G4E064E QD00E2A0ER00645 | m g
32935.EBSBSED339F2F4B4131E3145EAEEF9?F .[I]l]]ll] 0B51064E 0647 0B4E0020062806500645 .pg‘hs
9564 .EBBDSFEZDESDESDA]EC424E‘-\ESEW§EFF .[I]l]fﬂ]l (B3306500642064F 0020062806500645 pa_,&
293 | 70212850 2F 34FFFO1521BFFCAT1BEFFE2 .[I]l]]ll] (G4FOBAB0B4404F 00200628065 00645 | my s

20413 | 90727955FCF 2841 9675F 7018442F 2B .[I]l]]ll] (F450E500546054F 002005 2308500645 | wle | ¥
L 4
Noof Blocks: 158

Figure 4. Procedure for a 10-bit error noise

Figures 5 and 6 show the same blocks hit by 70 and 128 noise bit. In all three cases, the number of
plaintext candidates was 158 since this number depends on the characters in Block C rather than on the error
hitting the cipher of block A. This proves that regardless of the number of error bits, this method will always
find the correct answer.

4. Conclusion

In this paper, a new method for correcting errors in CBC block ciphers was presented. It exploits the
error propagation property of CBC. This method is applicable only to closed corpora such as secure file
storage systems. More research is needed to make the method applicable to open corpora through the use of
Natural Language Processing and the Statistical properties of the plaintext language.

413

Block A Block B Block C

Cipher blocks [Hex] |CAD454145FBE295B75151DBB3ECD3BET | 4E9D9BB53CIBAECDA4N045453440 46C:) DEB40SC1DBSE74B2BCE1 D1 EACBESAAE:
Plaintext blocks [Unicode |

Plaintext blocks [Hex)

i | HET

3405266101 66294EF1 EFESF16C0B 460 | 715D 9EDE1 544456 3FBFEF2C234EDF457 | DB4E 052700200643064E 0527 E46064F

Plamtext Candidates se Vector Cadidates

Cipher Blocks Candidates

Flock B (Plain] ipfer) / Blook B (Plain) Block A (Cipher)

Id Text 1d Text || Id Text |
4 SREEES DE280E52062F0E4F 6420627 00200645 v BEEIS 75770399601 3FC4EBDFDESFACD34C2F2 | 3 NS BFA3DDAC349DD515C8EGF34FFIFAFaTE

5893 | DEZEDE4FIE30064F0E48062700200645 15893 | 73779498741 3FC4ERDFDESFACD 34C2F2 5893 | BOAZCOBCZEA0DS15CEEBFE4FFIFIFIE

26547 | DE30064E 0631 064F0E48062700200645 26547 | BD 779598751 3FC4EEDFDESFACD34C2F2 26547 | ATAZC1BC2430 D515CEE BFB4FFIFIFI G

23385 | 0641064E0631 064F0648062700200645 | 23385 | 1C7 79598751 3FC4EBDFDESFACD 34C2F2 23385 | DEA3CTEC2430D515C8E BF84FF3FIFIN G

24339 | 0643064F 0631 0B4F0643062700200645 24339 | 1E779498751 3FC4EBDFDESFACD 34C2F2 24339 | D4A3COBC2430 D 515C8E BF34FF3FIFIN G

18151 | 0628064E0639064F 06423062700200645 18151 | 7577959870 13FCAEEDFDESFACD34C2F2 |[» 18151 | BFA3CTBC2250 051 5C8ESF84FF3FIFI1S »

1:2 »2:5 »3:9 -»4:14 »5:32 »6: 75 >7:109 »8:158
Mo of Blocks: 158

Mo of Blocks 158

Decypted cipher text (Block A) / Plaintext candidates (Block B)

Id Text Text Hex Hex g
8804 | OB4EDEZ270E28064C0O0200623064E 0644 Jiwl’ OEEO0E4ANE450R4C00200F280EE0NR45 | & &

323 | FATZE4ECE151EDIEFCCFR4FCTECEEF24 | mmm 054405500643064E00200652806500645 | o 24

9754 | 9E3B3ES0927DE11AFFFDEES2IFZ71968 | mmm 054F05420646064E0020062806500645 | ar Gy
32935 | B9989ED339FZF4B41 N CI45EAECFIFF | Imm 0551064E 0547 054E 0020062806500645 | s o°

9564 | BBBOSFE2D5I05E0A1EC424EABGE158FF | mmEm 053306500642064F0020062806500645 | s s

299 70212850 2F34FFFD1521BF/CA1BEFFEZ | MINN OE4FDE480644064F002006280E500645 | & Ly
20413 | SCFI7IRSFCF2841 9575F 701 8AAZF22RE [ITm OE450E50064E0EAF002006280E500645 2 |5

Mo of Blacks: 158
Figure 5. Procedure for a 70-bit error noise
Block A Block B Block C

Cipher blocks (Hes) | 385C3A73416229EA5F1108B07COO0GEA | 4ESDIBBE3CIBAECDA4O045A53AAD 460 OEB405C1 DBEEV4B 2B CE1DT1EACBERAAR:

Plaintest blocks [Unicade |
Flaintext blocks [Hex]

[mm | [G

FC2DA3AEDIFOFIEFF2800B539B237CCS | FIAFFIRSFIBAFOB3FFDFFID TFAAFFIBA | DB4E 052700200643054E 0527 0646054F

Plamtext Candidates Noise Vector Cadidates

Cipher Blocks Candid

Fiock B (Flain) Blog (Cipfer} / Biock B (Plain) Blook A (Cipher)
Id Text I Test (] 4 Tes |
4 aREIES 06280652062F 054F 06480627 00200645 b SREESS S7FFE FFFOSFFFCFFS7FOFOFFSFFIFFFF i » BFA3DDEC3450D515C8EBFB4FF3FSFI1E
5893 | 062E0B4F0630064F0648062700200645 15893 | SFFRAFFEAFFFCFFI7FIFOFFEFFIFFFF 5893 | B9A3C0BC2BADDE15C8EBFB4FF3FIFI1E
. 256547 . OE30064E 0631064F0B480E2700200645 25547 . SFFFFBFFSBFFFCFFI7FIFOFFEFFSFFFF . 25547 .A?A3E1 8C2490D515CBEBFB4FF3FIFIE
23385 . 0E41064E 0631 DE4F0E42062700200645 : 23385 . EEFFFEFFEBFFFCFFI7FIFOFFAFFSFFFF . 23385 . DE43CTBC2490 D515C8EBFB4FFIFIFI1S
24339.DB43084FDEB‘I084F0848082?DD2DDB45 24339 | ECFFRAFFSBFFFCFFI7FSFOFFEFFIFFFF 24333 | D4A3C08C2490D515CBEBFB4FF3FIFN G
.18151 .DB2SDE4EDBBSDB4FDB4SDB2?DD2DDB45 18381 .S?FFFBFF83FFFEFFS?FSFDFF8FFSFFFF | .181 51 .BFA3E1 8C2290D515C8EBFB4FF3FIFT1E

1:252:5-»3:9 4:14 »5:32 »6:75 -»7:109 »8: 158

Mo of Blocks: 158 Mo of Blocks: 158

Mo of Blocks: 158
Decypted cipher text (Block A) / Plaintext candidates (Block B)
| 1d Teut Text Hex Hex [
8804 | DB4E0EZ70E28064C00200623064E 0644 Jiar DEG006440645064C002006200E500645 | aw &,
N23 | FATZE48CE151ED 36FCCFR4FCTECEER 24 .I]lllllll 06440650064 2064E 0020062006500545 | a2l
9754 .9E383E5092?D811AFFFD5E923F2?1 968 .I]lllllll .DB4FDB4SDB4BDB4E0020082808500845 b
32935 .BSSSSED339F2F4B41 F1CH45EAECFS7F .I]lllllll .0851DB4EDB4?DB4EDU2DDE2SDESDDB45 .e,-_l'b“
.9584 .BBSDEFE2DSSDEBDA1EE424BABBB1 RAFF .Il]l]FfI]l] .D83SDB5DDB42DB4FDD2DDE2SDBSDDB45 p.ﬁ
293 | 70212850 2F 34FFFD1521BFFC41BEFFEZ .] DE4FOE480644064F0020052806500645 | sy
20413 | 8C727969F 072641 SE7EF7AAAFZ0BE | MU | DGAB0BSO0GAE0B4FOIP00E2E0B500645 | s 1™

-}

158

. l.*lo ofBI.o.c:ks.:
Figure 6. Procedure for a 128-bit error noise

References

[1] Agnew, G.B. Cryptography systems using redundancy. IEEE Transactions on Information theory 36 (1990) 31—

38
2]

U, J.N.P.S.B.M.S.K.R.A. Reliable transmission and storage of medical images with patient information using error
control codes. In: Proceedings of the IEEE INDICON. (2004) 147—150

(3]

Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V. Error analysis and detection procedures for a hardware
implementation of the advanced encryption standard. IEEE Trans. Comput. 52 (2003) 492—505

Nabil Mirza, Ziad Osman, Rached Zantout. A Novel Approach for Correcting Noisy AES Ciphers, ISPQ9,
Orlando, Florida, July 2009.

[4]
[5] Nabil Mirza, Ziad Osman, Rached Zantout. Correcting Noise in Block Ciphers, Submitted for Publication, 2009.

414

