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Outlier Diagnostics in Logistic Regression: A Supervised Learning 
Technique 
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Abstract. The goal of supervised learning is to build a concise model of the distribution of class labels in 
terms of predictor features. Logistic regression is one of the most popular supervised learning technique that 
is used in classification. Fields like computer vision, image analysis and engineering sciences frequently 
encounter data with outliers (noise). Presence of outliers in the training sample may be the cause of large 
training time, misclassification, and to design a faulty classifier. This article provides a new method for 
identifying outliers in logistic regression. The significance of the measure is shown by well-referred data sets. 
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learning.   

1. Introduction  

One of the goals of machine learning algorithms is to uncover relations among the predictors (data), to 
reveal new pattern and identify the underlying causes.  Learning algorithm can be roughly categorized as 
both supervised and unsupervised. In supervised learning the goal is to predict the value of an outcome 
measure based on a number of input measures [8].  

Logistic regression is one of the supervised machine learning technique that is used mostly for data 
analysis and inference. It is frequently used in epidemiology, medical imaging, computer science, electronics 
and electrical engineering. None of the areas having data sets to analyze without outliers. Noisy feature 
vectors (outliers) in the training data affect the hyperplane and a group of outliers can destroy the whole 
learning procedure. With the increasing use of this method different aspects of inference drawn from logistic 
regression are going through examinations. One of the most important issues is the estimation of parameters 
in the presence of unusual observations (outliers). In Logistic regression maximum likelihood (ML) method 
is used for estimating parameters and is extremely sensitive to ‘bad’ data [14]. In presence of outliers 
implicit assumption [4] breaks down and we have to find out the influence cases on the analyses. We discuss 
the idea of outliers, influential observations and diagnostics in logistic regression in section II. In section III, 
we present a new influence measure with numerical examples.     

2. Outlier, Influential Observation and Logistic Regression Diagnostics 

An outlier is an observation that deviates so much from other observations as to arouse suspicion that it 
was generated by a different mechanism. An observation is influential if it is individually or together with 
several other observations, has a demonstrably larger impact on the calculated values of various estimates 
than is the case for most of the other observations [1]. Diagnostics are certain quantities computed from the 
data with the purpose of pinpointing influential points after which these influential points can be removed or 
corrected. In binomial logistic regression outliers may occur as altercation (misclassification) between the 
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binary (1, 0) responses. Misclassification may refer to points which are on the wrong side of the 
hyperplane/classifier [17]. It may occur by meaningful deviation in predictor (explanatory) variables, which 
deviates the response (labels).  

Let us consider the standard logistic regression model: 
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This form gives an S-curve configuration. The well-known ‘logit’ transformation in terms of  X  is  
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where X is an n   k matrix (k = p + 1), Y is an n   1 vector of binary responses,  is the parameter vector.  

For the model     XY , the error term  
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has a distribution with mean zero and variance     XX  1 . The   violates the least squares (LS) 
assumptions and the ML method based on iterative reweighed least squares (IRLS) is used to estimate the 
parameters.  ML method is very sensitive to outlying responses and extreme points in design (predictor) 
space X.  

Among the large body of literature (see [9, 14, 15]) Cook’s distance (CD) [5] and DFFITS [1] have 
become very popular. For the logistic regression, ith Cook’s distance is defined [15] as 
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where 
 i


 is the estimated parameter of   without the ith observation. Using Pregibon’s [14] linear 
regression like approximations (3) can be reexpressed as  
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sir  is the ith standardized Pearson residual , iih  is the ith leverage value and iv is the ith diagonal 
element of  V,  
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Observation with CD value greater than 1 is treated as an influential. DFFITS is expressed in terms of 
standardized Pearson residuals and leverage values as 
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An influential observation has DFFITS value larger than c nk / , where c is between 2 and 3.  

3. New Diagnostic Measure 

We develop a single-deletion influence measure [11] and name this measure as squared difference in 
beta (SDFBETA). We introduce the newly proposed measure as 
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 is the variance of the ith residual after deleting ith observation. We use confidence bound 
type cut-off value (see [12]), and consider the ith observation to be influential if  
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Example:  Brown Data 
To show the performance of the proposed SDFBETA with CD and DFFITS, we consider a part of 

Brown et al. [3] data.  The original objective was to see whether an elevated level of acid phosphates (A.P.) 
in the blood serum would be of value as an additional regressor (predictor) for predicting whether or not 
prostate cancer patients also had lymph node involvement (L.N.I). The label (dependent) variable is nodal 
involvement, with 1 denoting the presence and 0 indicating the absence of involvement. Figure 1 identifies 
an unusual observation (case 24) among the patients without L.N.I. We apply new measure for the 
identification of the influential case. Table 1 shows that SDFBETA with Cook’s distance and DFFITS 
successfully identifies the case 24 as an influential.  

 

 
Fig.1 Scatter plot of acid phosphates versus nodal involvement 

 
Table 1 Diagnostic measures for Brown data with one outlier 

 

3.1. Generalized squared difference in beta 
A group of (multiple) influential observations may distort the fitting of a model in such a way that 

influence measures may suffer masking and/or swamping. We develop a generalized group-deleted version 
of the residuals and weights that will be effective diagnostics for the identification of multiple influential 
observations and free from masking and swamping problems. We name the group-deletion measure as 
generalized squared difference in beta (GSDFBETA). The stepwise method is as follows.  

Step 1: At the first step we try to find out all suspect influential cases. Some times graphical displays like 
index plot and character plot of explanatory and response variable could give us an idea about the influential 
observations, but these plots are not always helpful for higher dimension of regressors. We suspect that 
influential observations are potential outliers or high leverage points or both. Hence we can compute the 
generalized standardized Pearson residuals [10] and/or some leverage measures [9] to identify the suspect 
influential cases. In general, we prefer using any suitable robust techniques LMS and LTS [16], the BACON 
[2] or local influence measures [6] to find all suspect influential cases and to form the deletion set D.  

Step 2: We assume that d observations among a set of n observations are deleted as the suspected cases. 
Let us denote a set of cases ‘remaining’ in the analysis by R and a set of cases ‘deleted’ by D. Hence R 
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contains (n-d) cases after d cases are deleted. Without loss of generality, X, Y and V (variance-covariance 
matrix) are 
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 be the corresponding vector based on R. The fitted values for the entire logistic regression 
model based on R set are defined as 
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Here we define the ith deletion residual and the corresponding variance as  
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Hence the ith diagonal element of the leverage matrix can be expressed as  
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We define the generalized squared difference in beta (GSDFBETA) in presence of multiple influential 
cases,  
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To identify the multiple outliers Imon and Hadi [10] introduce the GSPR as 
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Based on the R, let us define the generalized weights (GW) denoted by 
*
iih [11], 
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Now the GSDFBETA can be re-expressed in terms of GSPR and deleted leverages 
*
iih as 
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We make a relationship between GSDFBETA with GDFFITS [13] in [11].  We consider the ith 
observation to be influential as like as GSDFBETA [12] in linear regression,  
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4. Example: Modified Brown Data 
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We modify the Brown et al. [3] data by putting two more unusual observations, cases 54 (200, 0) and 55 
(220, 0). Now we apply our newly proposed measure GSDFBETA. The method identifies all of the three 
suspect cases (Figure 2) as influential properly. Table 2 shows, besides the 3 cases it identifies one more 
(case 38) as influential, which was masked before the identification of the 3.  We show GDFFITS [11] gives 
the same result.   

 

 
Fig. 2 Scatter plot of L.N.I. against acid phosphates for Imon and Hadi’s modified Brown data 

Table 2. Proposed diagnostic measures for modified Brown data; three outlier 
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