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Abstract. The goal of supervised learning is to build a concise model of the distribution of class labels in
terms of predictor features. Logistic regression is one of the most popular supervised learning technique that
is used in classification. Fields like computer vision, image analysis and engineering sciences frequently
encounter data with outliers (noise). Presence of outliers in the training sample may be the cause of large
training time, misclassification, and to design a faulty classifier. This article provides a new method for
identifying outliers in logistic regression. The significance of the measure is shown by well-referred data sets.
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1. Introduction

One of the goals of machine learning algorithms is to uncover relations among the predictors (data), to
reveal new pattern and identify the underlying causes. Learning algorithm can be roughly categorized as
both supervised and unsupervised. In supervised learning the goal is to predict the value of an outcome
measure based on a number of input measures [8].

Logistic regression is one of the supervised machine learning technique that is used mostly for data
analysis and inference. It is frequently used in epidemiology, medical imaging, computer science, electronics
and electrical engineering. None of the areas having data sets to analyze without outliers. Noisy feature
vectors (outliers) in the training data affect the hyperplane and a group of outliers can destroy the whole
learning procedure. With the increasing use of this method different aspects of inference drawn from logistic
regression are going through examinations. One of the most important issues is the estimation of parameters
in the presence of unusual observations (outliers). In Logistic regression maximum likelihood (ML) method
is used for estimating parameters and is extremely sensitive to ‘bad’ data [14]. In presence of outliers
implicit assumption [4] breaks down and we have to find out the influence cases on the analyses. We discuss
the idea of outliers, influential observations and diagnostics in logistic regression in section II. In section 11,
we present a new influence measure with numerical examples.

2. Outlier, Influential Observation and Logistic Regression Diagnostics

An outlier is an observation that deviates so much from other observations as to arouse suspicion that it
was generated by a different mechanism. An observation is influential if it is individually or together with
several other observations, has a demonstrably larger impact on the calculated values of various estimates
than is the case for most of the other observations [1]. Diagnostics are certain quantities computed from the
data with the purpose of pinpointing influential points after which these influential points can be removed or
corrected. In binomial logistic regression outliers may occur as altercation (misclassification) between the
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binary (1, 0) responses. Misclassification may refer to points which are on the wrong side of the
hyperplane/classifier [17]. It may occur by meaningful deviation in predictor (explanatory) variables, which
deviates the response (labels).

Let us consider the standard logistic regression model:
eﬂ0+ﬂlxl+“'+ﬁpx p
14 eﬁo+ﬂlxl+---+ﬂpx p

This form gives an S-curve configuration. The well-known *logit’ transformation in terms of ”(X) is

g(x):In[%}:ﬂ0+ﬁlxl+"'+ﬁpxp=xﬁa )

where X isan n < k matrix (k =p + 1), Y isan n X 1 vector of binary responses, B is the parameter vector.
1-7(X) w.p.z(X)if y=1

—2(X) wp.1-z(X)if y=0

has a distribution with mean zero and variance ”(X )[l—;r(X )f The ¢ violates the least squares (LS)
assumptions and the ML method based on iterative reweighed least squares (IRLS) is used to estimate the

parameters. ML method is very sensitive to outlying responses and extreme points in design (predictor)
space X.

Among the large body of literature (see [9, 14, 15]) Cook’s distance (CD) [5] and DFFITS [1] have
become very popular. For the logistic regression, ith Cook’s distance is defined [15] as

cD, =(3(_”‘3)T();i\!x)(ﬁ(_i)‘ﬁ), i=12,..,n ©)
(o2

3 (i)
where p is the estimated parameter of p without the ith observation. Using Pregibon’s [14] linear
regression like approximations (3) can be reexpressed as

E(Y | X)=xz(X); where z(X)=

0<z(X)<1. Q)

For the model Y = (X )+ &, the error term & = {

h. =TT .
CD, zirsiz i owherer, =2 " j=12..n 4)
k 1- hii Vi (1_ hii)
si is the ith standardized Pearson residual , = js the ith leverage value and Viis the ith diagonal
element of V,

H =VY2X(XTVX)IXTVY2and V(y, [ x) =V, =7, (1-7,) .
Observation with CD value greater than 1 is treated as an influential. DFFITS is expressed in terms of
standardized Pearson residuals and leverage values as

DFFITS, =r, i=12,..n. 5)

vk/n , Where ¢ is between 2 and 3.

An influential observation has DFFITS value larger than ¢

3. New Diagnostic Measure

We develop a single-deletion influence measure [11] and name this measure as squared difference in
beta (SDFBETA). We introduce the newly proposed measure as

SDFBETA = (B = B) (XVX)B - )

: (6)
Vi( V(- h;i)
D1_
where Vi (1-hy) is the variance of the ith residual after deleting ith observation. We use confidence bound
type cut-off value (see [12]), and consider the ith observation to be influential if
SDFBETA| > 9 . ©)
n-3p
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Example: Brown Data

To show the performance of the proposed SDFBETA with CD and DFFITS, we consider a part of
Brown et al. [3] data. The original objective was to see whether an elevated level of acid phosphates (A.P.)
in the blood serum would be of value as an additional regressor (predictor) for predicting whether or not
prostate cancer patients also had lymph node involvement (L.N.I). The label (dependent) variable is nodal
involvement, with 1 denoting the presence and 0 indicating the absence of involvement. Figure 1 identifies
an unusual observation (case 24) among the patients without L.N.I. We apply new measure for the
identification of the influential case. Table 1 shows that SDFBETA with Cook’s distance and DFFITS
successfully identifies the case 24 as an influential.
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Fig.1 Scatter plot of acid phosphétes versus nodal involvement

Table 1 Diagnostic measures for Brown data with one outlier

Ind | CD0  DFFITS  SDFETA | Imd | OO0  DFFITE SDFETA |Imd | CD'  DFFITE  :DFETA
(L0000 (0582 (0.353] (1007 (05820 (0.35%) (L.O0 0588 (0353
2| ooos 0l 0107 | 20| opzs o022 0256 | 38| 00% 0254 0267
3| oo 0108 -olog | 21| ooos  -0105 0108 | 39| 0008 -0.123 0125
4| oooe 0105 -olog | 22| ooo? 0120 0122 | 40| 0020 0208 0214
5| oooe 0108 -olow | 23| oozs 0222 oz | 41| oo 008 -0.108
6| 0008 0108 0110 | 24| 2075 2149 3.619 | 42 | 0018 0.188 0.195
7| oooe 010 -011z2 | 25| 0044 0.224 0543 | 43 | 0.017 0.154 0.188
| ooos 010 -0los | 26| 0017 0185 0190 | 44 | 0.018 0.180 0.184
| o025 02 0234 | 27| 0008 -0110 01135 | 45| 0018 0.152 0186
0| o005 010 -0107 | 28| o008 0.108 0.10% | 48 | 0.018 0.151 0183
11| ooos 010 -0l0s | 22| ooos  -0108 0109 | 47 | 0.018 0.152 0186
12| oo 0112 -0l114 | 30| ooos  -0110 0115 | 48 | 0.017 0.157 0191
13| ooms 0105 -0log | 31| ooos  -0104 0107 | 49 | 0017 0.185 0.190
14| 0017 0187 0191 | 32| 0005 -0.104 0106 | 50| 0.017 0.187 0191
15| oom 0107 0111 | 33| ooss 0.280 ozee | 51| 0.018 0.181 0.184
16| 0006 0108 0110 | 34| o033 0.258 0266 | 52 | 0.0 0.198 0.204
17| oo0s 0108 -0log | 35| o038 0.272 028l | 53| 0.040 0.281 0316
18| ooo 01z 0131 | 36| ooos o007 0110

3.1. Generalized squared difference in beta

A group of (multiple) influential observations may distort the fitting of a model in such a way that
influence measures may suffer masking and/or swamping. We develop a generalized group-deleted version
of the residuals and weights that will be effective diagnostics for the identification of multiple influential
observations and free from masking and swamping problems. We name the group-deletion measure as
generalized squared difference in beta (GSDFBETA). The stepwise method is as follows.

Step 1: At the first step we try to find out all suspect influential cases. Some times graphical displays like
index plot and character plot of explanatory and response variable could give us an idea about the influential
observations, but these plots are not always helpful for higher dimension of regressors. We suspect that
influential observations are potential outliers or high leverage points or both. Hence we can compute the
generalized standardized Pearson residuals [10] and/or some leverage measures [9] to identify the suspect
influential cases. In general, we prefer using any suitable robust techniques LMS and LTS [16], the BACON
[2] or local influence measures [6] to find all suspect influential cases and to form the deletion set D.

Step 2: We assume that d observations among a set of n observations are deleted as the suspected cases.
Let us denote a set of cases ‘remaining’ in the analysis by R and a set of cases ‘deleted” by D. Hence R
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contains (n-d) cases after d cases are deleted. Without loss of generality, X, Y and V (variance-covariance

matrix) are
X Y Vv 0
X=| ®l,Yy=| FladV =] F :
Xp Yo 0 V,

Let ﬂ(R) be the corresponding vector based on R. The fitted values for the entire logistic regression
model based on R set are defined as

exp( ,H(R))

1+ exp( ﬂ(R))
Here we define the ith deletion residual and the corresponding variance as

i=12,..,n. 8)

ﬁ-i(R)

gi(R) =VYi — Ty ANd V) = Ty (1_7?i(R))' ©)
Hence the ith diagonal element of the leverage matrix can be expressed as
~ ~ T T -1 .
ey = Zimy (= Zige )X (X Ve X ) % =121, (10)

We define the generalized squared difference in beta (GSDFBETA) in presence of multiple influential
cases,

By = o) X VaX Wby = Pan).

GSDFBETA, =4 Ve (1 “<R>) (12)
(,B(R+|) ﬂ(R)) (X V XD)( (R+i) :B(R)) i¢R

i(R) (l_hii(R+i))

To identify the multiple outliers Imon and Hadi [10] introduce the GSPR as

A

Yi = Ziry

for ieR
\/Vi(R)(l: hii(R) ) (12)

iRy =
/A
i Tiwy for ieD.
\/Vi(R)(1+ hii(R)) .
Based on the R, let us define the generalized weights (GW) denoted by h; [11],

h..
_"®_ for jeR
1-h

h* — ii(R) (13)

1] h
—"® _ for jeD.

1+h

ii(R)
Now the GSDFBETA can be re-expressed in terms of GSPR and deleted leverages h as

*

_J1-hi
GSDFBETA =1, (14)

We make a relationship between GSDFBETA with GDFFITS [13] in [11]. We consider the ith
observation to be influential as like as GSDFBETA [12] in linear regression,

2
(GSDFBETA| > Bkin-d)) ___ ok (15)

“1-[3p/(n—-d)] n-d-3p°

4. Example: Modified Brown Data
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We modify the Brown et al. [3] data by putting two more unusual observations, cases 54 (200, 0) and 55
(220, 0). Now we apply our newly proposed measure GSDFBETA. The method identifies all of the three
suspect cases (Figure 2) as influential properly. Table 2 shows, besides the 3 cases it identifies one more
(case 38) as influential, which was masked before the identification of the 3. We show GDFFITS [11] gives
the same result.

10 — mo oo o oo

4 54 55
on — Omormoom o o o o
T T T

o 100 priii]
Acid Phosphates
Fig. 2 Scatter plot of L.N.I. against acid phosphates for Imon and Hadi’s modified Brown data

Table 2. Proposed diagnostic measures for modified Brown data; three outlier

Idex GSDFEETA0367) | kudex | GSDFEETA(03S7) |Index  GSDFBETAM 3671 | Index  GSDFEETAN 36T
1 0.0097 15 00096 28 0oL00 43 00377
2 0.0107 16 0.008% 30 00083 44 00358
3 0.0100 17 0.0100 31 0nL06 45 00372
4 0.0102 13 0.0370 32 00112 46 00364
3 0.0100 19 0.0628 33 01613 47 00372
& 0.0099 20 0.2604 34 0.1264 45 00406
7 0.0094 21 0.0102 35 01488 49 00zl
g 0.0120 22 0.0274 36 0n0gT 50 00406
] 0.0536 23 00388 37 i E 51 00360

10 0.0106 2 4.3762 38 03710 52 00410

11 0.0120 25 0.0052 ) 0nE02 53 0nLs0

12 0.0192 26 0.0381 40 02076 54 55408

12 0.0133 a7 0.0083 41 0n1ze 55 7 5386

14 0.0406 28 0.0100 42 00391
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