
 Efficient Data Load Balancing for Constant Degree P2P Systems

YANG XiaoXiao 1+, WANG XiaoHai 2, Xiao HanHua3
1 Postgraduate Department, Navy Submarine Academy, Qingdao, China

2, 3 Campaign Command Department, Navy Submarine Academy, Qingdao, China

Abstract. Constant degree DHTs are turning into the P2P domain’s new rising star and promising hotspot
in recent years. Load balancing is the importance guarantee that P2P system will perform better by against
several specific nodes storing too much and becoming system’s bottleneck. However, all known methods
either can’t fit dynamically for different load distributions, or bring too much overhead, or can’t fulfill the
requirement for balanced topology of constant degree P2P. To address this problem, we presents an efficient
load balancing algorithm Routing Information Statistic for constant degree P2P systems. Without adding any
data structures, RIS judges whether a new join data object should be redirected and which node is the most
suitable redirect storage using the statistic of routing information. Experimental results show, with low
redirect overhead, RIS keeps the constant degree P2P system load-balanced.

Keywords: constant degree topology; P2P; RIS; load balance

1. Introduction
In structural P2P systems, DHT maps each data object to a definite node according to its key, and divides

the whole key space into subspaces in which all objects (or their indexes) should be stored and maintained by
one node. However, the consistent hashing can’t assure all subspaces same in size and all nodes storage
equally number of objects relatively [1]. What’s more, in order to support range queries and many other
applications, P2P systems usually replace the consistent hashing with other mapping functions that could
maintain a better "data locality" property. However, these pre-defined functions will bind the key space to
nodes "innately", and then bring fundamental contradiction with load balancing [2, 3]. Therefore, a ideal
balancing algorithm should be able to use as little as possible redirect overhead to assure all nodes’ data load
lower than a threshold or be same as far as possible under different data distribution.

A constant degree P2P system is a kind of structured P2P system with O(logN) routing efficiency and a
constant number of neighbors. Because of the invariant node degree, a constant degree P2P system enjoys
superiority not only in high routing efficiency, but also in less updating, controlling messages, which
decreases network overhead and improves system performance [4]. However, most research on constant
degree P2P are focus on DHT’s construction and maintenance, while leaving the topologies’ characteristics
and load balancing been not well studied.

Combining constant degree topology’s characteristics and bit-shift routing schema, we present an
efficient load balancing algorithm called Routing Information Statistic (RIS) for constant degree P2P
systems. Without adding any data structure, RIS judges whether a new join data object should be redirected
and which node is the most suitable redirect storage using the statistic of routing information; aiming at
redirecting hot spot data objects evenly, RIS provides an method to construct new routing path. Experimental
results show, with low redirect overhead, RIS keeps the constant degree P2P system load-balanced under
different load distributions.

+ Corresponding author.Tel.: +86-532-51858140 ; fax: +86-532-51858140

E-mail address: xiaoxiao19811030@yahoo.com.cn

2012 International Conference on Information and Computer Networks (ICICN 2012)
IPCSIT vol. 27 (2012) © (2012) IACSIT Press, Singapore

186

2. Basic Definition
Kautz digraph: Given an positive integer d and n≥1, Kautz[5, 6] digraph K(d, n) is a directed graph

with diameter n and all nodes’ in-degree and out-degree equal d, each node’s ID is a d-based Kautz string
x=x1x2…xn, where xi∈{0,1,...,d} (1≤i≤n), xi≠xi+1 (1≤i≤n−1, and links to nodes x2…xny, where y∈{0,1, ...,d},
y ≠xn. Fig.1 shows Kautz digraph K(2,3).

Kautz order: For any two different nodes x=x1x2…xn and y=y1y2…yn, in K(d, n), we can define the total
order < as following:

x < y ()())()(),1[],1[jjii yxyxjinj <∧=∈∀∈∃⇔
We further note node x’ sequence number based on 0 as seq(x), e.g., in K(2,3), seq(010)=0, seq(012)=1.
Load ratio: The ratio μ between a node’s actual load and its capability.
We use light load ratio l and heavy load ratio h, to describe nodes’ load qualitatively, then all nodes can

divided into 3 classes: light loaded (μ≤l), middle loaded (l≤μ≤h), and heavy loaded (μ≥h). We also define
load ratio of whole system system.μ as the ratio between sum of all nodes’ load and the their capabilities.

Surplus space: For node q, surplus space q.space is the load value needed to reach heavy loaded. Unlike
a light loaded node which can accept new data object freely, a middle or heavy loaded node may redirect o to
other nodes if possible.

Wild card set: For a Kautz String x containing wild card “*”, such as 20*0, where “*” represents a bit
that can be any legal character, wild card set WCS(x) is a set contains all nodes whose ID match x.

In K(2,4), WCS(20*0)={2010, 2020}. |WCS(x)| denotes the order of this set. Then in K(d,n) node x’s
out-degree neighbors are WCS(x2…xn*), and |WCS(x2…xn*)|=d.

Routing path set: For a source node x and destination node (or Kautz String) y, a set RT(xy) contains all
nodes in the long path routing path including, that is

2 1 3 1 2 1 2 1RT() { , ... , ... ,..., ... , }n n n nxy x x x y x x y y x y y y y−=
In K(2,3), RT (212101) = {212, 121, 210, 101}. |RT(xy)| denotes the order of this set. When y’s length is

longer than the actual destination ID, its first character can be underlined to indicate the destination. For
example, in K(2,3) , RT (212101) = RT (2121012).

Routing surplus space (RTSpace): The load value needed for all nodes in routing path set to reach
heavy loaded. That is RTSpace(sp) = ∑(q.space), q∈RT(sp).

Fig. 1: Typical data joining process in K(2, 3)

3. RIS algorithm
We introduce RIS on FissionE, which can extended to other Constant degree P2P systems[6] easily.
Considering the new data object o’s sub join process FissionERouting[8], as the i, ii step shown in Fig.1:

i. Contacts a node s in the system, and obtains a hash Kautz string p as its ID;
ii. According to the long path routing algorithm, o initiates a message routing that from s to p.

passing through |s| nodes, the INSERT message stops at a unique node which id is p’s prefix.
iii. Joining node d directly.

187

Therefore, the INSERT message must pass all nodes in RT(sp) in turn. Because we can regard RT(sp) as
nodes distributed in the completed node set evenly for its dispersion property (Theorem 1), the statistical
information about these nodes can guide data’s joining to achieve load balance effectively: their load
information can make destination node determine accurately whether o need to redirect and provide more
redirect candidates than multi-hashing technique.

When INSERT message accesses nodes’ load information, it also records node’s address that may be
used to redirect storage. Comparing these information, o will join d or other node in RT(sp). The principle is
to decrease redirection number and assure all nodes’ data load at a lower level. There are four specific cases,
node d will save the redirect pointer except the first case.

i. d is light loaded: Join the target node d directly, i.e., FissionEJoin(o, d);
ii. d is middle or heavy loaded, and there are light loaded nodes in RT(sp): Join the minimum load

rate node in RT(sp).
iii. d is middle or heavy loaded, and there are no light load nodes in RT(sp), but not all of them are

heavy loaded: join the node with the maximum surplus space in RT(sp).
iv. all nodes in RT(sp) are heavy loaded: join the minimum load rate node in RT(sp).

RIS performs depend on system.μ: when system.μ is low, RIS accepts data objects deterministically to
reduce the cost of redirection while ensuring that all nodes light loaded; as system.μ increases, RIS will
redirect load to other light loaded nodes in the Routing Path Set, maintaining destination node to be light
loaded; as system.μ increases until all nodes’ in routing path set are not light loaded. RIS will select node
with the largest surplus space, thus the joining of data will affect nodes load ratio a little; when system.μ
continues to rise and all nodes in the routing path set are heavy loaded, the algorithm’s goal is to reduce the
difference in nodes’ load rate and assure no bottleneck exist. Table I shows the algorithm: the gate node
initialize the INSERT message first, while new routing path set will be constructed if necessary. When
passing each node, INSERT updates information with which destination node decides the storage position of
the data object.

Once the destination node d is heavy loaded or overload, there will be O(logN) (size of RT(sp)) nodes
can be potential redirect choice, therefore load balancing can be achieved under different data distribution
with low overhead. Exception is the hot spot data distribution, if lots of data with key p join the system
through node s, because the routing path set is always RT(sp), all nodes in this set will suffer a high load.
Thus, an algorithm GenerateRT that can construct different route path sets is badly needed:

The exact value of RTSpace can only calculated at real time, GenerateRT takes s.capability·|s|(h-s.µ)·δ as
its estimated value, where |s| is s’s ID length, δ is a factor less than 1, which stands for the value will be
slightly smaller than the union of surplus spaces of |s| nodes with load rate s.µ.

Table 1 Data Joining Algorithm

Initialization:
// initialization of information in INSERT message

MinRatio = ∞, MaxSpace = -∞,
existLightLoadNode = false, allHeavyLoad = true
if(data >s·(h-s.µ)·δ) GenerateRT(s, p)
for each node q in RT(sp)

if(q.μ≤h) allHeavyLoad = false
if(q.μ≤l) existLightLoadNode = true
if(q.μ≤ MinRatio) MinRatio=q.μ, MinRatioPeer = q
if(q.space> MaxSpace) && (!existLightLoadNode)

MaxSpace = q.space; MaxSpaceNode = q
//When reach node d
if(d.μ≤l) FissionEJoin(o, d)
else if (existLightLoadNode) FissionEJoin(o,MinRatioNode)
else if (!allHeavyLoad) && (!existLightLoadNode)

FissionEJoin(o, MaxSpaceNode)
else FissionEJoin(o, MinRatioNode)

 Table 2 Generatert Algorithm

Procedure GenerateRT(gateNode s, KautzString p)
ω = 0.8; RT’= newNodeSet = null; s’ = s

 //there are ω·|RT(sp)| new nodes in RT’ at least
while(|newNode|<ω·|RT(sp)|)

for each character x∈{0, 1, ..., d}
 s’ = s’·x
//generate new string by inserting new character into s and p
if (s’·p is a Kautz string)

RT’ = RT(s·x·p)
 for each node q in RT

if(!q∈RT(sp)) newNodeSet.add(q)
if(|newNodeSet| ≥ ω·|RT(sp)|) return RT’

188

When the number of data objects joining from s beyonds RTSpace(sp), it can be determined that load
rate of all nodes in RTSpace(sp) will be close to or already be heavy loaded, then the algorithm will
construct another routing path set RT’, table II shows the algorithm.

GenerateRT can construct a new routing path set RT’ which contains at least ω·|RT(sp)| new nodes, thus
redirecting loads to RT’ can effectively avoid nodes’ loading rate getting too high in RT(sp). For example in
K(2, 4), RT(01201210) = {0120, 1201, 2012, 0121, 1210}, by adding character ‘2’, we have new routing
path RT’(012021210) = {0120, 1202, 2021, 0212, 2121, 1210}.

4. Analysis

4.1. Characteristics of the routing path set
Theorem 1 In constant degree P2P systems, nodes in routing path set distribute dispersive.
Lemma 1 Suppose x=x1x2…xn and y=y1y2…ym are Kautz string with same degree, then seq(x), seq(y)

and Kautz seq(yx) following the relationship below:
1

1
1

() () ()
()

() () ()

n
m

n n
m

seq y d seq x x y
seq yx

seq y d seq x d x y−

⎧ ⋅ + <
= ⎨ ⋅ + − >⎩

Proof: in K(d, m), note Less (y) ={u:u<y, u∈K(d,m)}, then |Less(y)| = seq(y) obviously. By the
definition of order, for any u∈Less(y) and v∈K(d, n), we have uv<yx. Thus the seq(y)·dn Kautz strings in K(d,
m+n) with prefix in Less(y) must have a smaller sequence number than yx.

If x1<ym, then for any v∈K(d, n) and v<x, i.e., v∈Less(x), we have yv<yx, thus yx’s sequence number is
seq(x)th in WCS(y*m); if x1>ym, because there are dn-1 Kautz Strings with prefix ym that can’t connect with y,
thus yx’s sequence number is seq(x)-dn-1 in WCS(y*m)

seq(yx) is the sum of former two values, so lemma holds.
For any node x and its successor x2…xny1 in routing path set, their sequence numbers are x1dn-1 +

seq(x2…xn) (or x1dn-1 + sep(x2…xn) – dn-2, and seq(x2…xn)d + y1 (or seq(x2…xn)d + y1 - 1), there is no
regularity or continuity between them, thus theorem 1 holds. □

4.2. Data balance analysis
Dispersion of routing path node set determines data objects can be delivered to different position in

whole topology, which benefits balancing. In contrast, other structured P2P systems does not have this
character for their Un-bit-shift routing schema. For example in Chord, distances between node and its
neighbours are 20, 21…, which aren’t evenly distributed in ID space certainly. Furthermore, Chord chooses
the neighbour with smaller sequence number difference from destination at each routing step, thus the farther
away from destination, the more scattered and fewer nodes distribute in Chord routing path set, and it is
always hard to construct routing node sets containing lots of different nodes.

Balancing overhead usually includes a variety of additional data structures’ maintenance, and
exchanging load and update information regularly. Because RIS finishes statistics during the inherent routing
process, no additional data structures and exchange information are needed. Its joining overhead is about 1/n
of the n-choice [7] technique for only one route process is needed.

Redirection may result in extra overhead in data maintenance and query, while RIS only redirection data
until the destination node is middle loaded, so small load ratio difference is allowed when system.μ ≤ l,
which decrease the number of redirect data objects. What’s more, the number of nodes in routing path set is
far more than the n-choice technique, thus a better balance effect can be assured which is shown in section
VI’s experiments.

5. Experiments
We implement experiments based on FissionE simulator: data objects belongs to interval [0, 1], and

compare the balance effect and the number of redirect data objects under random distribution with multi-
hashing technique including 2-choice and 3-choice (l = 60%, h = 90%).

189

Fig.2 a~c shows nodes’ load ratio distribution (y-axis) against system’s load ratio (x-axis) when using
RIS, 2-choice, and 3-choice algorithm. Curves represent the median number of nodes’ load ratio under
different system load ratio, and each error bar’s top and bottom represent 99% and 1% load rate percentile. It
can be seen, nodes’ load distribution are quiet depend on the algorithms’ mechanism: two muti-hash
algorithms don’t change redirect strategy when system load rate changes, nodes’ load rate are almost
increase linearly. For RIS algorithm, because no light loaded nodes need redirect, there are always light
loaded nodes with rate l when system load rate is between 40% and 60%. As system.μ increases, some nodes
load rate reach h, but the RIS can guarantee the majority of the load rate is still close to l and no nodes
exceeds h, thus the curve have a gentle section when system load rate is between 60% and 80%. After the
system is overloaded, all nodes’ load rate increases synchronously, but the load rate difference is less than 3-
choice, proving that RIS reaches better balance than 3-choice with only 1/3 joining overhead of latter.

Fig. 2.d compares the number of redirect data objects. We observe that, the number of redirect data
objects increases linearly under the muti-hash algorithms when system load rate increasing, and 3-choice
redirects more objects than 2-choice because its better balance effect is based on more redirect cost. However,
RIS redirects a few at the beginning, and increases linearly only after system’s load rate exceeds l while still
less than former two muti-hashing algorithms. Thus, RIS ensure all light loaded nodes redirect a small
amount of objects when system.μ≤l, and its redirect cost is less when system.μ≥h.

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0%

20%

40%

60%

80%

100%

120%

system load ratio

no
de

 lo
ad

 ra
tio

 d
is

tr
ib

ut
io

n

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0%

20%

40%

60%

80%

100%

120%

system load ratio

no
de

 lo
ad

 ra
tio

 d
is

tr
ib

ut
io

n

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0%

20%

40%

60%

80%

100%

120%

system load ratio

no
de

 lo
ad

 ra
tio

 d
is

tr
ib

ut
io

n

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 105

system load ratio

re
di

re
ct

 d
at

a
ite

m
 n

um
be

r

RIS
2-choice
3-choice

(a) RIS (b) 2 choice (c) 3-choice (d) redirect overhead

Fig. 2: Basic performance.

6. Conclusion
Combining constant degree topology’s bit-shift routing schema, we presents an efficient load balancing

algorithm RIS. Without adding any data structures, RIS achieves balance based on the statistic of routing
information and redirection technology. Experimental results show, with low redirect overhead, RIS keeps
the constant degree P2P system load-balanced.

7. References
[1] X. Wang and D. Loguinov, "Load-Balancing Performance of Consistent Hashing: Asymptotic Analysis of

Random Node Join," IEEE/ACM Transactions on Networking, vol. 15, no. 4, August 2007.

[2] Abhishek Gupta, Divyakant Agrawal, and Amr El Abbadi. Approximate Range Selection Queries in Node-to-Node
Systems[C]. CIDR, Asilomar, California, USA, January 2003.

[3] Artur Andrzejak and Zhichen Xu. Scalable, efficient range queries for grid information services[C]. In Proceedings
of the 2nd IEEE P2P, 2002,33-40.

[4] S. Ratnasamy, S. Shenker, and I. Stoica. Routing Algorithms for DHTs: Some Open Questions. Proc. of First
International Workshop on Node-to-Node Systems (IPTPS’02), Cambridge, USA, 2002

[5] D. Li, X. Lu, and J. Wu. FissionE: A scalable constant degree and low congestion dht scheme based on kautz
graphs. In Proc. IEEE INFOCOM, pages 1677–1688, Miami,Florida,USA, March 2005.

[6] D. Guo, J. Wu, H. Chen, X. Luo. Moore: An Extendable Node-to-Node Network Based on Incomplete Kautz
Digraph with Constant Degree. Proc. of IEEE INFOCOM 2007.

[7] Byers J, Considine J, Mitzenmacher M. Simple load balancing for distributed hash tables. In: Kaashoek MF, Stoica
I, eds. LNCS. Berlin: Springer-Verlag, 2003. 80-87.

[8] Li DS. Research on peer-to-peer resource location in large-scale distributed systems [Ph.D. Thesis]. Changsha:

190

National University of Defense Technology, 2005 (in Chinese with English abstract).

[9] Bryce Wilcox-O'Hearn. Experiences deploying a large-scale emergent network. In Proceedings of the First
International Workshop on Peer-to-Peer Systems (IPTPS '02), Cambridge, MA, March 2002.

191

