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Abstract. In this study, we consider the minimum power broadcasting problem in wireless actuator
networks. We attack the problem with a method - the shared incumbent environment - that executes two
algorithms in parallel: a mathematical programming approach and a simulated annealing approach.
According to the shared incumbent environment paradigm, when an incumbent solution is found by one
method, the other method is notified and profits from the information received. Experimental results show
that the shared incumbent environment lead to results which are better than those of the two algorithms
combined in it taken singularly.
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1. Introduction

Wireless actuator networks establish communication by using devices called terminals that use omni-
directional antennea to send and receive radio signals. The same data can be sent to multiple terminals at the
same time, as long as they are within the coverage area of the sender terminal (this is called wireless
multicast advantage [1]). Terminals which are outside the coverage area of the sender terminal can still
receive the data with the help of intermediate terminals acting as routers [1, 2].

Among the applications of wireless networks, an interesting one is that consisting in commanding from
remote the actuators, which are at locations difficult to be reached by people [3]. In such applications, the
command is generated in a source terminal and sent to the wireless terminals attached to the actuators.

The Minimum Power Broadcast Problem (MPBP) is faced because of the fact that the terminals usually
depend on small mobile batteries. This means, there is limited power available for the network. As the
coverage area of a terminal increases, the power usage also increases. Therefore, finding a topology where
the coverage areas are minimized would decrease the power usage and ensure a longer life span for the
network. Thus, MPBP is the problem of finding a topology in which all terminals can receive data from the
source terminal, with the total transmission power is minimized [1].

Many different approaches were previously proposed for solving MPBP. Among them are a polynomial-
time heuristic called broadcast incremental power algorithm [1] and different approaches based on mixed
integer linear programming (MILP) [4, 5]. A matheuristic [6] approach for MPBP was also presented, where
the algorithm was a combination of linear programming and a quantum inspired evolutionary algorithm [2].

Recently, a matheuristic called shared incumbent environment, which executes a linear programming

solver and an ant system meta-heuristic search in parallel, was proposed for sequential ordering problems [7].
According to the shared incumbent environment, the MILP and the meta-heuristic search inform each other
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when they improve the best solution retrieved since the beginning of the computation. The purpose of the
shared incumbent environment is to quickly find solutions with the help of the meta-heuristic and inform the
MILP solver, so that, knowing that better solutions already exist, the solver does not explore unpromising
areas of the solution space and reaches to the useful solutions more quickly. On the other hand, new
improving solutions retrieved by the MILP solver are used by the meta-heuristic to exit from situations of
premature convergence/stagnation.

In this study, we aim to obtain improved lower and upper bound for large MPBP instances under limited
computation times, by implementing a shared incumbent environment, where the solver works in parallel
with a simulated annealing meta-heuristic algorithm.

This paper is organized as follows. In section 2 the problem definition is provided via a MILP model.
Section 3 explains a simulated annealing approach for the problem. In section 4 introduces the details of the
shared incumbent environment for this problem. Experimental results are shown in section 5. Finally, the
conclusions are drawn in section 6.

2. A mixed integer linear programming model

The MPBP consists in setting the transmission power of each terminal to create such a topology that the
source terminal will be able to transmit to all other terminals directly or with the help of other terminals
acting as routers, with the total transmission power minimized.

To formulate the MPBP, let us have graph G=(V,4), where V is the set of terminals and 4 is the set of
arcs which represent connections between pairs of terminals. An arc consisting of the two terminals i, j € V'
is denoted as (7,j). The source terminal is represented by s € V. The transmission power required for terminal
i to include terminal j within its coverage area is denoted by r;. We also set the power requirement for
terminal i to reach itself as r; =0. Now, let us have an array v; for each terminal i. The array V' stores the
indices of all terminals, sorted in a non-decreasing order according to the power requirement they impose on
terminal i. We call v as the k-th destination of terminal i.

The problem can be expressed as a flow-based MILP formulation [2]. In the formulation, x;; represents
the binary decision whether terminal i should have its £-th destination as the farthest reaching point for its
coverage area or not, and y; represents the flow in arc (i,j). The assumption behind the formulation is that an
arborescence is contained in each feasible connected topology.

\d
minimize Ezriuﬂiwik (1)
i€V j=1
v
subject to Z T =1 VieV (2)
j=1
[V
(VI-1) > o>y Y(i,j) € A (3)
k=l : vj=j
JEV JEV
zix € {0,1} YieV,Vke {1,2,...,|V|} (5)
0<y; <[Vl v(i,j)e A (6)

According to the constraints (2), only one farthest reaching point can be selected for each terminal i. This
means, one terminal can have only one coverage area. Constraints (3) connect x variables and y variables.
According to (4), the network flow represented by y; must form an arborescence. The domains of x and y
variables are specified in constraints (5) and (6), respectively.

3. A simulated annealing approach
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We now introduce a simulated annealing approach which was proposed for finding suboptimal solutions
for MPBP quickly [8]. Simulated annealing [9] (SA) is a meta-heuristic approach which simulates the
process of annealing in metallurgy. This process involves heating, which triggers the atoms to change their
initial positions and slow cooling, which slowly decreases the chances for the atoms to change to a worse
configuration, turning the process into a controlled local search. Into the simulated annealing algorithm, the
temperature is reflected as a variable which effects the chance of accepting a candidate solution vector with a
worse quality than the current solution vector.

The simulated annealing approach we use here starts by applying the broadcast incremental power and
the sweep algorithms [1]. The solution of the sweep becomes both the initial current solution and the initial
best solution. Then the simulated annealing process starts with temperature ¢=t;,;, where ¢, is a parameter
regulating the initial temperature. At each iteration, a candidate solution, which is obtained by modifying the
current solution, is generated. The modification is done as follows: A terminal i is randomly selected and its
coverage area is decreased in such a way that if terminal i reaches its k-th destination before the modification,
it reaches its (k-1)-th destination after this step; The modified solution is checked. If the network is still
connected, the modification is finished. Otherwise, the modification goes on by selecting a terminal j<i,
increasing its coverage area and fixing the disconnectivity. There are two alternative behaviors for the
selection of terminal j: with a probability p,, terminal j is selected in such a way that fixing the
disconnectivity will have the least addition of transmission power; with a probability /- p,, terminal j is
selected randomly.

If the candidate solution has a lesser cost (total transmission power), it is accepted, which the new
current solution becomes the candidate solution. Otherwise, the acceptance occurs with probability
calculated as e(@(candidate)-costteurrent)t " Iyring the execution, the temperature ¢ is decreased at every C,
iterations where the best solution was not improved. The decreasing of the temperature is done by
multiplying it by a factor o < 1. The process of modifying the current solution and probabilistically accepting
the modified candidate as the new current solution is repeated until ¢ > ¢,,;,, where ¢ {min} is the temperature
threshold. As a result of previous experiments [8], the following parameter values were found to be effective
for this algorithm p, = 0.2, t;,;, = 0.2, C, = 30000, a. = 0.9, t,;, =0.1.

4. A shared incumbent environment

A MILP solver represents the problem space as a tree, where each node is a solution subspace. When an
integer variable is found to be fractional after a linear programming optimization procedure, the current node
is divided into branches, where the fractional variable is forced to be rounded up and down to become an
integer. Such expansion of the tree takes exponential time. To decrease the time requirement for solving the
problem, the solver applies pruning: stopping the expansion of the nodes that are worst in quality than the
current known best solution.

The benefit of a shared incumbent environment is that it incorporates a meta-heuristic algorithm which
finds useful heuristic solutions very quickly and informs the solver, so that the solver is aware of good
feasible solutions in very early stages and applies pruning more efficiently. This leads the solver to
promising solution subspaces more quickly. In addition to this, MILP solver can also improve the shared best
solution and push the meta-heuristic out of premature convergence situations by informing it.

The implementation of this approach was done in a multi-threaded fashion: a MILP solver thread and a
simulated annealing thread. The simulated annealing thread is run repeatedly until a given maximum
computation time is reached, or the MILP thread has found a proven optimal solution. When the minimum
temperature is reached, the simulated annealing restarts the search with the initial temperature and a different
random seed.

5. Experimental results

To evaluate the performance of the shared incumbent environment, three alternative methods were
considered for solving some random problem instances: MILP, a MILP solver, allowed to use two threads in
parallel; S4, two simulated annealing threads working in parallel, sharing the best solutions; S/E, one thread
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dedicated to the MILP solver and once thread to the simulated annealing algorithm, working in parallel and
sharing the best solutions.

The algorithms were all implemented in C++ and IBM ILOG CPLEX 12.3 (http://www.cplex.com) was
used as the MILP solver, and a maximum computation time of 3000 seconds is allowed for each combination

instance/method. All tests were run on a computer with Intel Core 2 Duo 2.66 GHz processor and 4 GB
RAM.

Each problem instance was generated by laying terminals randomly on a two dimensional area. On the
two dimensional area, d;; being the euclidean distance between the terminals i and j, the power requirement
value r; was calculated as dijz, for each arc (i,j). A random terminal was selected as the source s.

Let us start the evaluation by analysing the results for a single randomly generated instance with 180
terminals, which well represents the usual behavior of the methods considered. Figure 1 shows the upper and
lower bounds obtained over time by MILP, SA and SIE. It can be seen that the upper bound (solution cost)
found by MILP is over 20 000 000; SA was able to find a much more useful solution very quickly, but could
not further improve the solution, being stuck already in the first minute over solution cost 310 000. S/E was
finally able to find a feasible solution very quickly, like S4, but also over time it kept improving the solution
and provided better results than MILP and SA4, with a solution cost near 300 000 at the end. It is also
interesting to compare the lower bounds provided by MILP and SIE over time. It can be seen that a lower
bound was provided earlier by SI/E and it kept increasing, which means the branch and bound
implementation of the solver can approximate to desired solutions faster.

60000000 \
40000000 \
“—
20000000 ~=~MILP UB
315000 +

31m00 M sssssnnnunnnnnnnnnnnnnnnnnnnnnnnnnn: SA LIB

305000
300000 SIE UB
29000 SIE LB
24000
19000
R MILP LB
14000

0 500 1000 1500 2000 2500 3000

Figure 1. Upper bounds (solution costs, UB) and lower bounds (LB) found by MILP, SA and SIE on a 180-terminal
example instance, drawn versus time in seconds. Note that the y-axis contains gaps to be able to cover all the progress
made by the three methods

To make a general evaluation of S/E, 10 instances for each number of terminals were generated, number
of terminals being 130, 140, 145, 150, 160, 170, 180, 190 and 200. Then, each instance was solved by the
approaches MILP, SA and SIE. The results are shown in table 1. In the table, each row represents the average
of 10 instances (and over how many of these 10 instances S/E was able to improve is given in parentheses),
the column group “Improvement over MILP” represents the improvements made by S/E in comparison to
MILP, and the column group “Improvement over SA” represents the improvements made by SI/E in
comparison to SA4. Improvements for the upper bounds are calculated as /-a/b, where a is the upper bound of
the solution of SIE and b is the upper bound of the solution of the other approach. Improvements for the
lower bounds are calculated as a/b-1, where a is the lower bound of the solution of S/E and b is the lower
bound of the solution of the other approach. The row “overall” shows the average and total number of
instances where S/E was able to improve calculated over all instances.
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Table 1. Results generated by each approach

Number of terminals | Improvement over MILP (%) | Improvement over SA (%)
Lower bound Upper bound Upper bound
130 -79.23 (0/10)  -6.65 (0/10) 3.32 (10/10)
140 78.02 (0/10)  -0.86 (1/10) 11.43 (10/10)
145 4.77 (6/10)  68.77 (7/10) 7.34 (9/10)
150 35.35 (7/10)  80.12 (9/10) 9.86 (10/10)
160 25.56 (7/10)  63.95 (9/10) 14.75 (10/10)
170 72.29 (9/10)  89.20 (9/10) 96.50 (10/10)
180 36.95 (9/10)  89.40 (9/10) 2.89 (10/10)
190 24.95 (9/10)  89.72 (9/10) 10.85 (10/10)
200 21.92 (9/10)  89.67 (9/10) 14.90 (9/10)
Overall 7.17 (56/90)  62.59 (62/90) 11.32 (88/90)

In table 1, it can be seen that, for both upper bounds (i.e. solution costs) and lower bounds, the shared
incumbent environment S/E provides considerable improvements compared to MILP, except for instances
with the number of terminals 130 and 140. This shows that the shared incumbent environment is effective on
large instances to provide non-trivial lower and upper bounds. On top of that, the shared incumbent
environment also provides improvements over the heuristic solution costs of the simulated annealing
approach most of the time, which shows that the shared incumbent environment also results in a competitive
heuristic method.

6. Conclusions

A shared incumbent environment, which executes a mathematical programming solver and a meta-
heuristic search in parallel and makes them share their best solutions, was considered for the minimum
power broadcasting problem in wireless actuator networks. Experimental results show that the shared
incumbent environment finds better solutions in limited time for the minimum power broadcasting problem.
Therefore, this approach can be seen as an effective heuristic for the large instances of this problem, and at
the same time as a tool to provide better lower bounds than a standard MILP solver.
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