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Abstract. In this study, we consider the minimum power broadcasting problem in wireless actuator 
networks. We attack the problem with a method - the shared incumbent environment - that executes two 
algorithms in parallel: a mathematical programming approach and a simulated annealing approach. 
According to the shared incumbent environment paradigm, when an incumbent solution is found by one 
method, the other method is notified and profits from the information received. Experimental results show 
that the shared incumbent environment lead to results which are better than those of the two algorithms 
combined in it taken singularly. 
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1. Introduction 

Wireless actuator networks establish communication by using devices called terminals that use omni-
directional antennea to send and receive radio signals. The same data can be sent to multiple terminals at the 
same time, as long as they are within the coverage area of the sender terminal (this is called wireless 
multicast advantage [1]). Terminals which are outside the coverage area of the sender terminal can still 
receive the data with the help of intermediate terminals acting as routers [1, 2]. 

Among the applications of wireless networks, an interesting one is that consisting in commanding from 
remote the actuators, which are at locations difficult to be reached by people [3]. In such applications, the 
command is generated in a source terminal and sent to the wireless terminals attached to the actuators. 

The Minimum Power Broadcast Problem (MPBP) is faced because of the fact that the terminals usually 
depend on small mobile batteries. This means, there is limited power available for the network. As the 
coverage area of a terminal increases, the power usage also increases. Therefore, finding a topology where 
the coverage areas are minimized would decrease the power usage and ensure a longer life span for the 
network. Thus, MPBP is the problem of finding a topology in which all terminals can receive data from the 
source terminal, with the total transmission power is minimized [1]. 

Many different approaches were previously proposed for solving MPBP. Among them are a polynomial-
time heuristic called broadcast incremental power algorithm [1] and different approaches based on mixed 
integer linear programming (MILP) [4, 5]. A matheuristic [6] approach for MPBP was also presented, where 
the algorithm was a combination of linear programming and a quantum inspired evolutionary algorithm [2]. 

Recently, a matheuristic called shared incumbent environment, which executes a linear programming 
solver and an ant system meta-heuristic search in parallel, was proposed for sequential ordering problems [7]. 
According to the shared incumbent environment, the MILP and the meta-heuristic search inform each other 
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We now introduce a simulated annealing approach which was proposed for finding suboptimal solutions 
for MPBP quickly [8]. Simulated annealing [9] (SA) is a meta-heuristic approach which simulates the 
process of annealing in metallurgy. This process involves heating, which triggers the atoms to change their 
initial positions and slow cooling, which slowly decreases the chances for the atoms to change to a worse 
configuration, turning the process into a controlled local search. Into the simulated annealing algorithm, the 
temperature is reflected as a variable which effects the chance of accepting a candidate solution vector with a 
worse quality than the current solution vector. 

The simulated annealing approach we use here starts by applying the broadcast incremental power and 
the sweep algorithms [1]. The solution of the sweep becomes both the initial current solution and the initial 
best solution. Then the simulated annealing process starts with temperature t=tinit, where tinit is a parameter 
regulating the initial temperature. At each iteration, a candidate solution, which is obtained by modifying the 
current solution, is generated. The modification is done as follows: A terminal i is randomly selected and its 
coverage area is decreased in such a way that if terminal i reaches its k-th destination before the modification, 
it reaches its (k-1)-th destination after this step; The modified solution is checked. If the network is still 
connected, the modification is finished. Otherwise, the modification goes on by selecting a terminal j≤i, 
increasing its coverage area and fixing the disconnectivity. There are two alternative behaviors for the 
selection of terminal j: with a probability pr, terminal j is selected in such a way that fixing the 
disconnectivity will have the least addition of transmission power; with a probability 1- pr, terminal j is 
selected randomly. 

If the candidate solution has a lesser cost (total transmission power), it is accepted, which the new 
current solution becomes the candidate solution. Otherwise, the acceptance occurs with probability 
calculated as e(cost(candidate)-cost(current))/t. During the execution, the temperature t is decreased at every Ct 
iterations where the best solution was not improved. The decreasing of the temperature is done by 
multiplying it by a factor α < 1. The process of modifying the current solution and probabilistically accepting 
the modified candidate as the new current solution is repeated until t ≥ tmin, where t_{min} is the temperature 
threshold. As a result of previous experiments [8], the following parameter values were found to be effective 
for this algorithm pr = 0.2, tinit = 0.2, Ct  = 30000, α = 0.9, tmin =0.1. 

4. A shared incumbent environment 

A MILP solver represents the problem space as a tree, where each node is a solution subspace. When an 
integer variable is found to be fractional after a linear programming optimization procedure, the current node 
is divided into branches, where the fractional variable is forced to be rounded up and down to become an 
integer. Such expansion of the tree takes exponential time. To decrease the time requirement for solving the 
problem, the solver applies pruning: stopping the expansion of the nodes that are worst in quality than the 
current known best solution. 

The benefit of a shared incumbent environment is that it incorporates a meta-heuristic algorithm which 
finds useful heuristic solutions very quickly and informs the solver, so that the solver is aware of good 
feasible solutions in very early stages and applies pruning more efficiently. This leads the solver to 
promising solution subspaces more quickly. In addition to this, MILP solver can also improve the shared best 
solution and push the meta-heuristic out of premature convergence situations by informing it. 

The implementation of this approach was done in a multi-threaded fashion: a MILP solver thread and a 
simulated annealing thread. The simulated annealing thread is run repeatedly until a given maximum 
computation time is reached, or the MILP thread has found a proven optimal solution. When the minimum 
temperature is reached, the simulated annealing restarts the search with the initial temperature and a different 
random seed. 

5. Experimental results 

To evaluate the performance of the shared incumbent environment, three alternative methods were 
considered for solving some random problem instances: MILP, a MILP solver, allowed to use two threads in 
parallel; SA, two simulated annealing threads working in parallel, sharing the best solutions; SIE, one thread 
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