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Abstract. A major question in database marketing is that of identifying the customers who are most likely 
to make a repeat purchase in the near future. This information helps us to preferentially target these 
customers in any marketing campaign. The likelihood of a customer to make a repeat purchase depends on 
two questions: “Has the customer churned?” and “What is the frequency of transactions of the customer?” In 
this paper we develop a methodology using a Bayesian analysis to answer these questions; we further design 
a scalable regression method that approximates the Bayesian model. Using the answer to these questions as 
inputs we predicted the likelihood of a customer making a transaction within a time span into the future (e.g. 
in the next six months). Our algorithm can score massive databases for repeat purchase in real time. The 
proposed algorithm was tested on a recent Back to School campaign run by consumer exchange and has 
yielded promising results. 
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1. Introduction  
In the context of targeted marketing to consumers, the ability to tell which customers are more likely 

than others to make a purchase with HP in the near future greatly enhances effectiveness of any marketing 
campaign. It helps to rank customers on their propensity to re-purchase, and leads to preferential treatment of 
the right customers. It also reduces the likelihood of bombarding customers, who are less likely to purchase, 
with marketing material (over email or postal mail), possibly alienating them from future interest in HP. The 
propensity to make a repeat purchase depends on two parameters unique to each customer, the probability of 
churn and the frequency of transactions. The availability of rich customer databases, storing a wealth of 
information about the customer (transactional, demographic, psychographic), means that predictive models 
can be built to predict future purchase. However, most of those techniques are not easily extensible or readily 
applicable. Moreover, almost all these methods are not amenable on big transaction data.  

The customer repeat purchase modeling framework we propose, based on a regression based 
approximation to a Bayesian hierarchical model, answers an important question for marketers in a scalable 
fashion. Further, since it uses only transaction data, it is readily applicable to a wide array of customer 
segments across different business units. Our repeat purchase framework is a unified version of two data 
mining techniques, a Bayesian Hierarchical Model (BHM) and Regression based approximation of BHM 
applied on the transaction data available for customers. The algorithm provides the probability of a customer 
repeating in next k periods, where k may be any unit of time (e.g. 30 days, 6 months or 1 year). 

2. Our Solution 

2.1. Bayesian Hierarchical Model(B.H.M) 
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In this step a Bayesian Hierarchical model was built with the parameters below. Prior distributions were 
chosen using historical data. 

Number of transaction made by the  jth customer follows a Poisson process with rate parameter λj 
 [1] 

The probability of dropping out after each purchase as Binary with probability pj 

The underlying idea behind the analysis is shown in figure 1 
 

 

 
 
 
 
 

 

Figure 1: Modeling the frequency of transactions 

The sufficient data used for sampling the conditional distributions in the MCMC chain for a customer are 
first transaction date (t1), last transaction date (tx) and the number of transactions (x). All variables are readily 
obtained from the transaction history of customers. No demographic/psychographic variables were used in 
this model- and hence this model is quite efficient from the data sufficiency perspective. We used the 
medians of the posterior distributions, sampled by the MCMC algorithm, as estimates of λj and pj [3]. Then, 
the probability of customer j making a purchase in the next k periods is given by       

(1- pj)(1-exp{-kλj})                                                                                        [i] 
While the BHM was effective in correctly identifying customers who are likely to repeat, it is not 

efficient when scoring millions of customers (each customer requiring hundreds of iterations of the MCMC). 
It is common for an organization like HP to deal with millions of customers; for example, individual 
consumers, micro-businesses or small and medium businesses, customers on Snapfish. 

2.2. Regression based Approximation. 
The computational complexity of the BHM means that even though the results are promising, they are 

not ready to be operationalized. We next propose a fast scalable regression based approximation to this 
model. Note that the Bayesian model depends only on three variables for each customer, t1, tx and x. Further, 
any good scoring algorithm will have the property that two customers with the same values of t1, tx and x will 
have very similar scores. Because of these two properties, any sufficiently parameterized regression model 
will capture all pattern including non-linear effects and interactions.  

We build two polynomial regression models for the parameter estimates of λj, pj. To accomplish this, we 
first estimated λj, pj for 3 million customers using the Bayesian Model and then used the logarithms of 
estimates as response in two polynomial regression models with predictors’ t1, tx and x (and some interaction 
variables). To guide our choice of the degree of polynomial fit we explored the non-parametric fit from a 
Generalized Additive Model or GAM [2] (where the response is modeled as a sum of spline functions of 
individual predictors). A polynomial fit is also faster than a GAM, and lends easily to scoring large databases.  

Once the estimated values of λj and pj for every individual are obtained from the regression model they 
are fed into equation [i] to obtain the probability of each customer making at least a purchase in next k time 
period.  

3. Evidence that the Solution Works. 
To validate the utility of our algorithm, we formulated different hypothesis revolving around the power 

of predicting repeat customers, speed with which it can be executed in big databases and the ability to 
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provide solution for multiple marketing problems across various domains. The two main hypotheses we 
considered were: (1) is our model doing better than 
random targeting (2) is our algorithm fast so that it 
can be applied on large data bases that different 
business units of HP possesses. 

 

 
 
 

 
 

 

Figure2 highlights that our models are giving considerably better results than random targeting and also the 
fact that regression approximation doesn’t lead to any reduction in performance. The diagonal (baseline) 
denotes the case of random targeting (i.e. if 10% or 1 decile of customers are targeted one can expect to 
reach about 10% of the repeat purchasers). The curve above the diagonal shows the percentage of purchasers 
the model will successfully capture if we 
target the top (in terms of purchase probability) X 
deciles of customers. The top 4 groups here capture 
75% of the buyers. This could be of strategic 
importance, i.e. when implementing a campaign, 
targeting the top 4 deciles captures a vast 
majority of repeat purchasers. 
 

Table. 1: Efficiency metric 

 

 
 
 
 
Table1 indicates that how efficient the Regression based approximation model is over BHM. Regression 

method which was derived using the output of Bayesian method is 180 times faster over BHM. 
The repeat algorithm provided a very satisfactory result when back tested on the 2011 Back to School 

(BTS) campaign. The top 10% of customers (based on the ranks from our model), captured customers who 
contribute 37% ($2.5 MM) of the total revenue in the BTS campaign. This says that, the model when used 
for customer selection identifies the most valuable customers. It further helps to reduce the cost of a 
campaign and the percentage of incorrect targeting which may lead to a bad customer experience. 

4. Competitive Approaches. 
Logistic regression can model events such as purchase/no purchase in a given period (e.g. 1 year) and 

has often been used to answer some of the questions discussed above. However, for each value of k a 
different regression needs to be built and validated. Sometimes, recency-frequency-monetary (RFM) analysis 
also is used to segment customers according to their transaction history, by rating their loyalty or value. This 
is a rather crude method, without any modeling assumption and or much predictive value 

Fig.2:Effectivness of the models 

Models Time taken for obtaining 
repeat purchase score for 1 
MM customer

Regression based 
Approximation model

10 minutes

Bayesian Hierarchical 
Model

1800 minutes
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5. Current Status and Next Steps. 
Churn is an important part of any customer intelligence knowledgebase and because of the non-

contractual relationship between HP and its customers, is very difficult to predict. Presently we are in a 
process of validating the churn coming out as an output of the model. If comes out significant, will be a huge 
value adds in understanding customer lifecycle. 

Also, we are working on building models that utilize the Bayesian modeling approach to predict the 
value and volume of future transactions. This will help us to infer product affinity for individual customers 
as well as cross-sale patterns for different products. This, when done and integrated with the approach 
discussed in this paper should prove useful for a marketer in inferring the customer lifetime value of any 
individual in his database. 

6. Legal Disclaimer 
“This document is published only for information purpose. The document is provided without any 

representation and in no event shall HP will be liable with the use of the information made available in the 
document. The information has been provided on an "as is" basis without warranty of any kind. The 
document is made available for information purpose only, further copying, reproduction or redistribution of 
the document is expressly prohibited. In no event shall HP be liable for lost profits or any direct, indirect, 
special, punitive, incidental or consequential damages arising out of or in usage of the document. HP is 
registered trademark of Hewlett Packard Company and its subsidiary”. 
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