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Abstract. A direct robust model reference adaptive control for linear plants with time-varying structured 
uncertainties is presented in this paper. The proposed robust MRAC uses the estimates of the structured 
uncertainty to generate the control input. The output error equation is used to estimate the uncertainty. The 
control signal is applied to the plant simultaneously with the reference input, resulting in nearly zero tracking 
error. It is also shown that the proposed method does not require any knowledge about the bound of the 
uncertainty to achieve tracking, which is required by many other methods.  Lyapunov’s theory is used to 
achieve stability of the plant and boundedness of signals. Simulations are used to show the effectiveness of 
the proposed method. 

Keywords: model reference adaptive control, uncertainty estimation, Lyapunov’s theory 

1. Introduction 
The first model reference adaptive control method and other early MRAC methods dealt with time-

invariant parameters ([1], [2]). Practical situations like aircraft flight control, process control, robotics etc., 
where time-varying parameters are frequently come across, led to the development of robust MRACs. These 
early schemes also ensured only bounded tracking error, some of which e.g. σ-modification, switching σ-
modification, ε1-modification etc. are discussed in [3]. Some other robust MRACs were developed for 
special types of parametric uncertainties i.e. finite jump parameters [4], periodical parameter variation [5] 
and parameter variations exponentially decaying to zero [6]. 

Another technique to develop robust MRAC involves using robust control laws to achieve robustness 
and then using MRAC schemes to make actual plant output track model plant output [7], [8].  

In [9] MRAC is developed by estimating what the control signal would be if the plant parameters were 
known. In [10] a state-feedback MRAC is developed for systems with bounded arbitrary parameter 
variations, which is an improvement over the method discussed in [11].  

However, the method proposed in [10] suffers from the drawback that it considers only the uncertainties 
associated with system matrix. The input matrix is considered to be the same for both the actual plant and 
model plant, though it can not be guaranteed that the input matrices of both the actual and model plants will 
be same. 

The present work provides a method that overcomes the drawback of the method given in [10] by 
comnsidering plants with uncertainties both in the system matrix and the input matrix. This method basically 
extends the easy to use techniques to develop MRAC for linear time-invariant plants as given in [3], to time 
varying plants. In the present method the actual plant is subjected to simultaneous actions of the reference 
input and a control input. The control input is generated with the help of the estimates of the uncertainties 
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associated with system matrix and input matrix. It is assumed that the certainty equivalence principle holds. 
Lyapunov’s method is used to obtain bounded control input.  

It is shown that the method proposed here does not require any knowledge about the nature of the 
uncertainties associated with the actual plant and it provides good tracking. 

2. Problem Statement 
 The linear time-invariant model plant is represented by  

                                               x A x B rm m m m= +�                                                                          (1) 

y Cxm m= , where 1nxm
×∈R  is the model plant state, 1mym

×∈R is the actual plant output, 
1pr ×∈R is the reference input and matrices n nAm

×∈R  and n pη ×∈R are the model state and input 
matrices, respectively. Now, consider a multivariable linear time-varying actual plant 

                                          ( ) ( )x A t x B u tp p p p= +�                                                                         (2) 

y Cxp p= , where 1nxp
×∈R  is the actual plant state, 1my p

×∈R is the actual plant output, 
1( ) pu t ×∈R is the input (generally, the control input) and matrices n nAp

×∈R , n pBp
×∈R and m nC ×∈R  

are the state matrix, input matrix and output matrix, respectively. Now, the actual plant equation is rewritten 
as 

                                         ( ( )) ( ) ( )x A t x B u tp m p mδ η= + + +�                                                        (3) 

y Cxp p= , where ( ) n ntδ ×∈R the time-varying is structured uncertainty affecting the plant states and n pη ×∈R is the uncertainty associated with input matrix. If xp can be made to track xm , yp will 
track ym . To obtain the state-tracking, reference input r and a separate control signal s are applied to the 
actual plant. Therefore equation (3) is remodeled as 

                                         ( ( )) ( )x A t x B r ksp m p pδ= + + +�                                                           (4) 

Where, 1ps ×∈R  is the control signal and k  is constant to be chosen by the designer.  
The method given in [10] uses the plant equation: 

( ( )) ( ) , (0) 0x A A t x B u t x xp= + Δ + =� , 

y Cx= and the control signal given by [10] is 
1 1( ) ( ) ( ( )) ( ) ( ) ( ) ( )T T T Tu t B B B A A t x t B B B v t r tm
− −= − − + , where ( )v t is the feedback term in the 

uncertainty estimation algorithm, representing an adaptive estimate of ( ) ( )A t x tΔ [10]. 

3. Proposed MRAC 
Let the state-tracking error be given by eo .  
e x xo p m= − . To make the tracking error zero, from equations (1) and (4), the control signal is: 

( )B ks t x rp pδ η= − − , which leads to zero tracking error when ( ) ,A t A B Bp m p mδ η− = − = .  
Now, let 1B BKp = where 1

n mK R ×∈ a time-invariant constant matrix is and n nB R ×∈ , also a constant 
matrix, is called the state-interaction matrix and it is so chosen that it is invertible.  

( ( ) )1
1 1 1( ) ( ( ) )1 1 1

BK ks t x rp
T Ts k K K K B t x rp

δ η

δ η

∴ = − −

− − −⇒ = − −
 

Of course, 1K is so chosen that 1 1
TK K is invertible. Now, equation (4) can be rewritten as  

                                       ( )x A x t x B r r B ksp m p p m pδ η= + + + +�                                            (5) 

( ( ) )

( ) ( ( ) )

1( ( ) )( )

x A x B r t x r B ksp m p m p p
x D A B r t x r B ksp m m p p

x x t x r B ks D Ap m p p m

δ η

δ η

δ η

⇒ = + + + +

⇒ − = + + +

−⇒ = + + + −

�
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                                       1( ( ) )( )e x x t x r B ks D Ao p m p p mδ η −⇒ = − = + + −                           (6) 

The estimate of the tracking error can be generated by: 
1ˆ ˆ( ( ) )( )e t x r B ks D Ao p p mδ η −= + + −  

1ˆ ˆ( ( ) ( ) )( )t x r t x r D Ap p mδ η δ η −= + − − −  

Now, assuming the certainty equivalence principle [1] to hold, ˆ( ) ( )t tδ δ= and ˆη η=  are obtained 
1ˆ (0)( ) 0e D Ao m
−∴ = − = .  The estimation error is given by: 

ˆe eo oε = −  
eoε⇒ =  

4. Parameter Estimation 

Output error equation is used to estimate the uncertainty as it gives better performance in a noisy 
environment [3].  Equation (6) is rewritten as 

1( ( ) )( )e t x r D Ao p mδ η −= + −� � , where ˆ( ) ( ) ( )t t tδ δ δ= −�  and ˆη η η= −�  

( )e A e t x ro m o pδ η⇒ = + +� ��  

Following the method given in [3], let the following function be a candidate for Lyapunov’s function: 

( , , ) ( ) ( )
T TP PT A A B BV e e Pe tr tro o oBA

δ δ δ δ
δ δ

γ λ
= + +

� � � �
                           (sec.6.2.3 [3]) 

where, ( )tr A denotes the trace of matrix A . , 0γ λ >  are constant scalars. 
0TP P= > is chosen as the solution of the Lyapunov equation TA P PA Qm m+ = − , whose existence is 

guaranteed by the stability of  Am (theorem 3.4.10,[3]). Now, taking derivative of V w.r.t. time we get 

(2 ) (2 )
T TP PT T A A B BV e Pe e Pe tr tro o o o

δ δ δ δ
γ λ

= + + +
� �� � � �

� � �   

                                          (
T TP PA A A Aδ δ δ δ

γ γ
=

� �� � � �
∵   and

T TP PB B B Bδ δ δ δ

λ λ
=

� �� � � �
)  (sec.6.2.3 [3]) 

Now, V� along the tracking error trajectory is:   

( ) T TT T T TV e A P PA e x Pe r Peo m m o p o oBe Ao
δ δ= + + +� ��

�
T Te P x e P ro p o BAδ δ+ +� �

(2 ) (2 )
T TP PA A B Btr tr

δ δ δ δ

γ λ
+ +

� �� � � �
               ( TP P=∵ ) 

2 2T TT T TV e Qe x Pe r Peo o p o oBe Ao
δ δ⇒ = − + +� ��

� (2 ) (2 )
T TP PA A B Btr tr

δ δ δ δ

γ λ
+ +

� �� � � �
 

( 1 1Te P xo pAδ
×∈�∵ R ( ) TT T T Te P x e P x x Peo p o p p oA A Aδ δ δ∴ = =� � � .Similarly, TT Te P r r Peo oB Bδ δ=� �   ) 

2 (
T P TT TA AV e Qe tr Pe xo o pe Ao

δ δ
δ

γ
⇒ = − + +

�� �
��

� )
T P T TB B Pe roB

δ δ
δ

λ
+ +

�� �
�  

Now, V eo
�
�  will be negative if  

T P T TA A Pe xo pA
δ δ

δ
γ

= −
�� �

�   

 Te xo pAδ γ⇒ = −��   
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ˆ Te xo pA
�δ γ⇒ = . Similarly, ˆ Te roBδ λ=�  

V∴ is a Lyapunov function for the plant under consideration and the plant is universally stable. It can be 
shown  (3) that e Lo ∈ ∞� and 2e Lo ∈ , which imply that 0eo → as t →∞ . 

5. Simulation Results 
 The simulations are carried out for two cases. In case-I, only the state matrix parameters are affected by 

uncertainty and input matrix parameters are same for both the model plant and actual plant. In case-II, the 
system matrices are affected by sinusoidal uncertainty and model plant input matrix and actual plant input 
matrix are different.  

Model plant state matrix and model plant input matrix are: 
0 1

4 4
Am =

− −
⎡ ⎤
⎢ ⎥
⎣ ⎦

 and 
0
1

Bm =
⎡ ⎤
⎢ ⎥
⎣ ⎦

 , respectively.
2 1 1

1 0 0.5 2
BK

− − −
=
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 , 51 1
TK K =  and 50k = .  

Case-I.a: sinusoidal uncertainty 
The uncertainty affecting the actual plant system parameters are given by: ( ) 0.1sin10t tδ =  

Case-I.b: random uncertainty: 
The uncertainty is given by a random signal and its magnitude is within ±0.1 

 
Fig.1.Actual plant output (case-I.a)     

 
   Fig.2.Actual plant output (case-I.b)     

                                                                                                                                                                          
Case-II: input matrices are different: In this case, the uncertainty affecting the system parameters is 

given by: ( ) 0.1sin10t tδ = and the actual plant input matrix is given by:
0
2

Bp =
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
Fig.3. Actual plant output (proposed MRAC)   

 
Fig.4. Actual plant output (MRAC in [10]) 

6. Conclusion 
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The robust MRAC proposed in this work is shown to work satisfactorily in the presence of different 
bounded structured uncertainties. The present method is easier to implement and analyze and more general in 

scope than the method given in [10]. There can be many solutions that satisfy the relation 1B BKp =
, but the 

differences are only in the rate of adaptation, which can be taken care of by setting the adaptive gain k  
properly. 
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