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Abstract. In this paper we present an efficient design of generalized, multi-operand single-precision 
floating point addition. The addition operation is optimized in two ways. Firstly, the design of [4] has been 
modified to improve efficiency of multi-operand floating point addition in terms of speed and area.  Secondly, 
varieties of adders were analyzed for parallel addition and identified suitable adder. Our approach is applied 
to six operand floating point addition to compare with the related works. The implementation is synthesized 
and verified on Xilinx Virtex4 FPGA. Further, the performance of proposed design was compared in terms of 
speed and resources with other designs, the comparison results are also presented in this paper. 
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1.
 

Introduction  
Floating point arithmetic is largely used in high speed signal processing, network security applications, 

search engines, data mining algorithms, etc.  Floating point arithmetic is generally considered an expensive 
operation, in terms of area and time and it impacts overall performance of the application.  In this work we 
present an efficient method to implement six-operand floating point addition in terms of hardware resources 
(area and clock speed). 

1.1.
 

Our Contribution 
In  the recent  literature,  design  of networked  and  parallel  three  operands  addition is presented  in  

[4].   In this paper,  better accuracy  was achieved  compared  to three-operand addition implemented based  
on two IEEE floating-point adder; however, this approach  requires the precision of the effective operation to 
increase from f to 2f+5 bits; this approach[4] requires a linear increase in number of precision bits for 
addition of higher number  of operands. The proposed design uses the constant number of precision bits for 
any number of operands, without affecting the accuracy of result.   

Efficient parallel adder is also analysed by employing various adders in the design.  Finally, all design 
approaches were implemented including work of [4] and tree of two operand addition, with Six-operands 
targeting the same platform, so that the performance of our design can be compared with other related works 
effectively.  The design is implemented in VHDL (Very High Speed Integrated Circuits Hardware 
Description Language) and targeted to Virtex4 FPGA. 

The paper is organized as follows: Section 2 explains the representation of Single precision Floating 
point number by IEEE 754 standard. Section 3 explains the proposed design of Six-operand floating point 
addition and experimental results are given in Section 4. Finally, conclusion and future works are discussed.  
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2.  Floating  Point Number Representation  
The IEEE (Institute of Electrical and Electronics Engineers) has produced a standard for floating point 

arithmetic [1].  This standard specifies the standard method to represent single precision (32 bit) and double 
precision (64 bit) floating point numbers, as well as procedures to perform two operand arithmetic operations 
such as addition, subtraction, multiplication, division and etc. 

The IEEE single precision floating point standard representation requires a 32 bit word, which is 
represented in bits position as 0 to 31, left to right.  The  first  bit  is the sign bit,  ‘S’, the next  eight  bits  are  
the exponent bits,  ‘E’, and the final 23 bits are the fraction ‘M’, also called as mantissa. The bits are laid out 
for single-precision is shown in Table 1 

 

 

 

Table. 1: Bits laid out for single-precision floating point number. 

The value V represented by the word may be determined as follows: 
• If E = 255 and M is nonzero, then V = NaN (“Not a number”) 
• If E = 255 and M is zero and S is 1, then V = – Infinity 
• If E = 255 and M is zero and S is 0, then V = Infinity 
• If 0 < E < 255 then  V = (−1) S × 2E−127 × 1.M  (1) 

Where “1.M” is intended to represent the binary number created by prefixing M with an implicit 
leading 1 and a binary point.  These are “normalized” values. 

• If E = 0 and M is nonzero, then V = (−1) S × 2−126 × 0.M  (2)  
These are “denormalized” values. 

• If E = 0 and M is zero and S is 1, then V = – 0 
• If E = 0 and M is zero and S is 0, then V = 0 
The range of numbers that can be represented in single precession normalized floating point 

representation is ±2−126  to  (2 − 2−23 ) × 2127  and denormalized  floating point representation is ±2−149 to       
(1 − 2−23) × 2−126 . 

3. Six-Operand  Floating  Point Addition  
Floating  point  operations  are  comparatively  more  complex  than fixed point  operations. Lots of 

research has been (and still is being) employed in improving the efficiency of floating point arithmetic 
operation. In particular, two operand additions are well studied and efficient designs are published [2, 3, 5, 6 
and 7], however multi-operand addition is still researched to improve its efficiency in terms of area and 
speed.  In multi-operand floating point addition, there are six major steps involved.  Each step is discussed in 
detail in the following: 

3.1. Find Maximum Exponent  
Unpack each floating point operand (F1 , F2 , F3 , F4, F5 , F6 ) to obtain the sign (S1 , S2 , S3, S4, S5, S6), 

exponent(E1 , E2 , E3 ,E4 ,E5 , E6 ) and mantissa (M1 , M2 , M3, M4, M5, M6) bits separately.  Determine the 
maximum exponent Emax = max (E1, E2, E3, E4, E5, E6) and compute the exponent differences ∆E1-6 = Emax – 
E1-6. Complexity of finding maximum exponent increases linearly when the number of operands increases.  It 
impacts the throughput of floating point addition. 

3.2. Extend and Align Mantissa Bits  

0 1 ... 8 9 ... 31

S E7    ... E0    M22    ... M0
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Three extra bits namely guard bit, round bit, and sticky bit are appended to LSB of all mantissas to 
increase the accuracy of the result.  These three bits are used in the rounding process.  Sticky bit is the 
logical OR ing of any bits that are dropped during shifting of mantissa with exponent difference ∆E1-6 
and effective parallel addition. These three bits are provided for underflow. 

• One hidden bit is appended to MSB of mantissa.  Hidden bit ‘1’ is to be added if operand is 
normalized else hidden bit ‘0’ is to be added if operand is de-normalised. 
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         Fig. 1: Block diagram for the Six-operand floating point addition. 
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• In addition to the underflow bits and one hidden bit, additional bits are provided for overflow, which is 
appended to MSB of each mantissa. For example if number of operand is Six, then overflow bits (2), hidden 
bit (1), mantissa bits(23), underflow bits(3). 

• Shift all aligned mantissas with exponent difference ∆Ei to the right, so that all operands will have the 
same exponents. 

3.3. Sign Magnitude Operation  
 In our approach, we have addressed floating point addition of mixed sign operand and uni-signed 

operand.   
In mixed sign floating point addition: 
• For negative operands, two’s compliment is to be taken for extended mantissa and one sign bit ‘1’ is to 

be appended to MSB of extended mantissa 
• For positive operands, one sign bit ‘0’ is to be appended to MSB of extended mantissa.  
Uni-signed operands may have all positive sign or all negative sign. 
• In case of all negative sign, mantissas will not undergo two’s compliment conversion; all mantissas   

will be treated as positive operands.  However, the resultant sign bit will be assigned as ‘1’. 
• In case of all positive sign, the resultant sign bit will be assigned as ‘0’. 

3.4. Effective Parallel Addition Operation 
We have analysed  the efficient parallel  adder  by implementing three varieties of adder,  namely  carry  

save adder,  carry  lookahead  adder  and  ripple  carry  adder.   Experimental result is discussed in the next 
section.  Parallel additions of extended mantissas generate resultant mantissa Mo. 

• If the MSB of Mo is ‘1’, then the Mo requires two’s compliment conversion and the resultant sign   bit 
So will be assigned as ‘1’. 

• If the MSB of Mo is ‘0’, then the resultant sign bit will be assigned as ‘0’. 

3.5. Perform Normalization  
A normalization stage occurs after the parallel addition. Normalisation process is based on 3 bits of most 

significant precision bits of Mo. 
• Identify the position of leading one on 3 bits of MSB bits of Mo is denoted as Q. 
• Count the number of leading zeros C after Q. 
• Left shift Mo by C, and decrement Emax by C, if Q is zero. 
• Right shift Mo by Q, and increment Emax by Q, if Q is non-zero. 

3.6. Rounding  Operation  
The  IEEE  standard has  four  different rounding  modes[1] namely  round  to nearest value, round  

towards zero, round  towards positive infinity and round  towards negative infinity. 
We have implemented all rounding modes.  The addition operation uses any one of the rounding mode 

based on the input, which is received along with operands. Based on the mode selected and resultant 
underflow bits (guard, round and sticky bits), Mo is altered.  If the alteration causes overflow in Q value, then 
Mo is shifted by one and the Emax is incremented. Extract 23 bits, eliminating sign bit, overflow bits (2 bits), 
hidden bit, guard bit, round bit and sticky bit, from Mo to make resultant Mo. Finally So, Emax and Mo will be 
packed into 32 bit floating point resultant value. 

4. Experimental  Results 
Six-operand floating point addition can be implemented in two methods.  The straight-forward method is 

network of 2-operand floating point addition.  Another  method  is parallel  addition of Six  operand  floating 
point is proposed  and  the various  adders  are  analysed  to perform  parallel  addition to make  the design  
more efficient. Efficiency of our approach is compared with the network of two operand floating point 
addition.  
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VHDL is used for implementation, ModelSim SE Plus 6.4f is used for simulation and Xilinx ISE9.1i is 
used to synthesis.  The target FPGA board is Xilinx ML410 and the board uses Xilinx FPGA (Virtex 
4vfx60ff1152-11).The synthesis results for the proposed design and comparisons with other related work are 
illustrated in Table 2. 

 It’s clear from the table 2, the design has less allocated resources and performs better in terms of 
operation frequency than the network tree of two input floating point addition and Tenca [4]. From the 
analysis, it is found that Carry save adder is efficient for multi-operand addition when compared to ripple 
carry adder and carry look-a-head adder. Same approach is implemented with more number of operands and 
carry save adder shows significant improvement when the number of operand increseases. 

Design Number of slices Operating  frequency (Clock speed) 

Networked architecture approach 4140 (16 %) 42.73Mhz 

Approach of Tenca[4] 8712 (34 %) 11.50 Mhz 

Proposed  Design(Ripple  carry adder) 3840 (15 %) 44.020Mhz 

Proposed  Design(Carry lookahead  adder) 3764 (14 %) 44.769Mhz 

Proposed  Design(Carry save adder) 3682 (14 %) 45.34Mhz 

Table. 2: Performance results of various design of six operand floating point adder  

5. Conclusion 
In this paper, the design approach of Six-operand floating point addition is thoroughly analysed and 

presented.  It is proven that the proposed design uses reduced number of slices and increased operating 
frequency as compare to Networked architecture approach and other approach. Our future work is extended 
to design and implementation of pipelined multi-operand floating point addition to improve the throughput 
further. Currently, in this paper constant number of overflow bits is appended to mantissa before parallel 
addition. This approach works for six-operand addition, without affecting the accuracy of result. However, 
we are working towards generalisation of overflow bits to arrive at an equation for n number of operands.  
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