
Reducing Page Faults with a Self Testing Page Allocation Policy

Omid Gholami1, AmirMasoud Rahmani, Homayoun Motameni

Computer Engineering Department, Islamic Azad University
Mahmudabad Branch, Iran

Abstract. Virtual memory is a technique which allows the process to be run without being in the main
memory completely due to lake of enough memory in system. Here techniques such as demand paging do the
interchange of some parts of being executed process. Due to the slow work of secondary memory, this
exchange of pages cost a lot and also slows down the system functionality. Different algorithms are designed
for page replacement try to decrease page faults, each of which is valuable but an important point is the
amount of allocated pages to the process which play an important role in decreasing the page faults. This
paper tries to introduce a page allocation policy based on process behavior in different period of time which
leads to the decrease of total page faults of the system and causes increase in system efficiency.

Keywords: Virtual Memory, Paging, Page Allocation Algorithm.

1. Introduction
With multi-tasking growth, the need to main memory is also increased. But generally this memory is not

sufficient for all processes. So there is no way but to divide the space of the memory between processes.
There fore each process is given less than what is needed. The process is saved in the secondary memory and
is brought to the main memory to be executed. The lazy exchange technique is used instead of complete
transition technique. It means that only parts of the process which are needed are taken into the main
memory and are located in places considered for them [1].

Now if the process needs a new page which is not in the main memory operating system should remove
one of pages from the memory and replace another page. There are different algorithms for page replacement
of which we can name FIFO, LRC, Optimal, Second Chance, LFU and MFU [3]. All of these algorithms
follow the same goal and that is to decrease the page fault and increase system efficiency and performance
[3]. The important point here is the amount of pages allocated to each process, because more pages causes
fewer page fault.

2. Related work
There are different algorithms such as Equal Allocation or Appropriate Allocation for allocating pages

to process which will be discussed. The easiest method is allocation of m frame to n process to which m/n of
frame is given to each process, for example if we have 93 frame and 5 process, 18 frame is given to each,
and three are left. This method is called Equal Allocation.

Second method of frame allocation is to determine how many frames each process needs. If in one
system with 62 free frames there are l0k and 127k process it is not good that each process is given 31 frames
because a 10k process needs just 10 frames, and the rest (21 frames) are useless. In the second method of
memory allocation, frames are given based on the processes size, which is called Appropriate Allocation
[1]. Suppose that the required memory for process Pi is Si, so the allocated memory to process is calculated
as follows:

1 Omid Gholami, Tel: (+98)9111558339, Email: gholami_iran@yahoo.com

419

 2009 International Conference on Computer Engineering and Applications

IPCSIT vol.2 (2011) © (2011) IACSIT Press, Singapore

(1) Ai =M* (Si/S)

In which Ai is the number of allocated page to process Pi, Si is the required pages and S is equal to ∑Si. M
is total pages available. For example in the previous example the total number of required pages are 137 and
is given to the process as mentioned here:

• (10 / 137) * 62 =4
• (127 / 137) * 62 =57

The third type of allocation is allocation based on Priority of the processes and it works in the way that
each kind of process is given a priority and each priority has specific amount of pages [3].

3. Dynamic Page Allocation
The point which is not observed in above algorithms is degree of locality of requests for each process. In

the previous example the first process is given 4 and the second on is given 57 frames. While it is possible
that the first process has a lot of jumps to different parts of the program and has a higher page fault and the
second process runs totally linear and has lower page fault. It is believed that in the number of allocated
pages to one process, the amount of locality of required addresses is considered by process in time periods. It
means that the process which accesses the memory regularly and has lower page fault is given less page and
the process which has upper page fault is given more pages, So that totally the number of faults of total
system pages are decreased and the performance is increased.

In this method the page fault is controlled periodically and according to it the amounts of the pages of the
processes are calculated. For example maybe a process in a period of run has the high page fault but after a
while the faults are decreased. In this case by increase of faults the numbers of pages are increased and by
decrease of faults the numbers of pages are decreased [5].

To use this policy it is behaved in a way that at the beginning of the performance based on appropriate
allocation, each process is given some frames and then the process behaviour is evaluated in a specific time
period then the process is given new amounts of pages (the number of the pages of the process are decreased
or increased). For example suppose that there are 3 processes (A, B and C) and also there are 30 frames of
pages in the main memory. Based on appropriate allocation algorithm each one is given 10 frames (Suppose
that the processes are the same size). After a specific time period the processes will be evaluated. If it is
supposed that the number of faults of page A is 8 and B is 12 and C is 40, based on number of faults 30
frames are divided between them which are calculated as follows:

A: (8 / 60) × 30 = 4 frames

B: (12 / 60) × 30 = 6 frames

C: (40 / 60) × 30 = 20 frames

As it is seen process C which had the most page faults has held the most numbers of memory pages.

3.1. Implementation of Dynamic Allocation
To prove this idea simulation is used. In a way that 4 process are considered and are supposed to have

the same size. They are divided into three levels based on locality of Addresses:
• Max is the processes which have few jumps and their required addresses are close to each other.
• Min is the processes with a lot of jumps and need page irregularly and their required addresses are

totally expanded.
• Medium is the processes that based on the pages request are in the middle.

The simulator program at the beginning of the simulation divides the memory pages between the
processes equally. For page replacement FIFO and Optimal algorithms were used. In this simulation in
periods with seven requests of pages, the process history is used to find out how many page faults it had,
then based on this statistics for next round, page decision will happen. The process with higher page fault
will have more pages. It should be mentioned that in each period only the faults of prior period is considered
to prevent wrong estimation. For example consider a process which had a lot of page fault at the beginning,
now it does not have any request with page fault. If it is tired to allocate pages based on all faults the process
will own a lot of pages which are not needed. So it is better to assess the processes periodically [6].

420

What was observed in this policy was not interesting. They also worked badly in some cases. In analyze
it was shown that the algorithm has some weaknesses. It was observed when you considered the A process
that does not have page fault in one simulation period. Now the number of this process page in the next
period is zero ((0×60) / 30 = 0).

This process has not taken any pages for next period. This problem causes the process faces a lot of page
fault in the next run and it increases the total faults and decreases the algorithm efficiency. The above
algorithm is directed this way so that the amount of page faults of all processes would be the same or to some
extend balanced. To solve the pervious problem three constrain are considered for the algorithm:

First: In each level, algorithm can add or subtract one page to or form the number of pages of the
process. So that the process which has a true function and has low page fault will not face severe page
decrease and does not face the former algorithm problem.

Second: If the difference between the process page faults and the average of total process page faults is
less that %20, the number of page will not change number of pages. Because when the number of process
page fault is almost the same or close to each other, the cost of taking a page from one process and be given
to another is more than the advantage of a page increase to a process.

Third: If the number of page of a process is less than a specific bound (limit) it should not be decreased
again. Because the process which has few pages and has the most thrift in using the pages should not face
any shortages (in simulation the least number of pages for a process is 3).

After enforcing these policies to simulator program a relative improvement was made in the number of
all page faults in processes. Also surprisingly since the numbers of process page faults were almost the same
there is a hope to divide power of a multi-tasking system between them equally. Because normally when
program is faced a page fault there is an interrupt to bring the page into the memory. In the pervious situation
the program which had a lot of page fault, lost a lot of time due to the interrupts and it led to a low
performance comparing to a page faultless process. While with new policy it is enforced equally on all, so
the programs will run more rightfully.

4. Evaluation
Four processes are considered for simulation. Also number of the existing pages in the memory can

change between 30 and 60. The policy chosen for the pages replacement was FIFO and Optimal. Two
processes are taken from MIN and two from Max level. Each program calls 20 pages from 1 to 20 (we can
assume minimum fault for each process is 20 faults). Amounts of page request for each process are 300
pages. The results of simulation are in Table 1.

421

Table 1: Amounts of Page faults with new Page Allocation policy

Page faults without
Self-Testing
Allocation

Page faults with
Self-Testing
Allocation

Total pages fault
(4 process)

Pages
existing

in
system
(total) Least Most LeastMost Normal

FIFO

SELF-
Testing
FIFO

20 215 103 155 423 417 30
20 178 83 113 389 371 35
20 160 64 84 358 294 40
20 151 53 74 322 253 45
20 125 41 57 254 188 50
20 110 38 58 248 162 55
20 87 37 53 203 157 60

Page faults without
Self-Testing
Allocation

Page faults with
Self-Testing
Allocation

Total pages fault
(4 process)

Pages
existing

in
system
(total) Least Most LeastMost Normal

Optimal

SELF-
Testing
Optimal

20 213 103 152 421 411 30
20 170 80 105 380 262 35
20 149 59 78 332 266 40
20 139 43 66 301 239 45
20 117 39 57 242 176 50
20 103 37 54 233 159 55
20 80 36 49 206 158 60

Graph in Fig. 1 shows the number of faults for range between 30 and 70 frames for page allocation

without and with past page fault evaluation and with FIFO page replacement policy.

Fig. 1: Number of page faults with and without Evaluation (FIFO page replacement policy)

Graph in Fig. 2 shows the number of faults for range between 30 and 70 frames for page allocation
without and with past page evaluation and with Optimal page replacement policy.

422

Fig. 2: Number of page faults with and without Evaluation (Optimal page replacement policy)

As it is observed in range of 45 to 60 frame evaluation policy could show good efficiency and high
difference in fault amount with normal way; while by increase in number of frames the efficiency will
decrease because increase in number of frames will be helpful to all of process and algorithm does not have
much to do [7]. Also when number of pages are too low this policy is not helpful, because the faults will
influence all processes and you can not find a process with low page faults to allocate its extra pages to
others. The other point is that the least page fault for processes is 20, because it is supposed that the
processes have the same size and they all need 20 page frames. So they will have page fault for first request
of the frames.

The only thing that must be mentioned is that this policy makes CPU Usage overload. Measurements
showed that CPU usage without this policy in 10 evaluations was about 35% for simulator and with this
Policy it became about 46%.

5. Conclusion
As it was observed the page allocation base on past page faults of processes presents a good result totally

in a multi-tasking systems and it decreased the number of system page faults. Also by creating balance in
number of faults of pages in difference programs it helps in better functionality of operating system. For
future work we could contemplate other parameter like time or priority of processes in page allocation.

6. References
[1] Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, "Operating System Concept”, 7Th Edition, 2004.

[2] Alvin R. Lebeck, Xiaobo Fan, Heng Zeng, Carla Ellis, "Power Aware Page Allocation", Department of Computer
Science, Duke University, Durham, NC 27708 USA, falvy,xiaobo,zengh,carlag@cs.duke.edu, 2000.

[3] Ann Arber, "Virtual Memory Management", MI: UMAI Research Press, 1984.

[4] Murali Vilayannur, Anand Sivasubramaniam, Mahmut Kandemir, "Pro-active Page Replacement for Scientific
Applications: A Characterization", Department of Computer Science and Engineering, Pennsylvania State
University, University Park, PA 16802,USA,{vilayann,anand,kandemir}@cse.psu.edu, 2005 IEEE.

[5] Yannis Smaragdakis, Scott Kaplan, Paul Wilson, "The EELRU adaptive replacement algorithm", Georgia Institute
of Technology, Atlanta, GA 30332-0155, USA, October 2002.

[6] Susanne Albersa, Lene M. Favrholdtb, Oliver Gielc, "Paging with locality of reference", Department of
Mathematics and Computer Science, University of Southern Denmark, 2004.

[7] Nimrod Megiddo, Dharmendra S. Modha, "ARC: A SELF-TUNING, LOWOVERHEAD REPLACEMENT
CACHE", USENIX File & Storage Technologies Conference (FAST), San Francisco, CA, IBM Almaden
Research Center, 650 Harry Road, San Jose, CA 95120, March 31, 2003.

423

