
 The Implementation and Analysis of Important Symmetric Ciphers on Stream
Processor

Ping Yao 1, Mu Xu 1, Gu Liu 1, Guang Xu1, Hong An1 2 + , Wenting Han1

1Department of Computer Science and Technology, University of Science and Technology of China, Hefei,
230027, China

2 Key Laboratory of Computer System and Architecture, Chinese Academy of Sciences, Beijing, 100080,
China

Abstract. Imagine is a stream processor that employs a two-level register hierarchy with 9.7 Kbytes of
local register file capacity and 128 Kbytes of stream register file (SRF) capacity to capture producer-
consumer locality in stream applications. Parallelism is exploited using an array of 48 floating-point
arithmetic units organized as eight SIMD clusters with a 6-wide VLIW per cluster. It achieves good
performance in multimedia applications, signal processing, and scientific computing, but how it works in
information security area remains unknown. This paper implements Base64 and several important symmetric
ciphers on Imagine, including Blowfish, Rijndael and RC5. The result shows a speed up of 3x, 2.4x, 2.5x,
and 5x over traditional implementations respectively. Imagine shows good potential in information security
area. By comparing the performances achieved by Imagine and general purpose processor and analyzing the
characteristics of applications, we also propose a checking model for choosing applications which can get
better performance on Imagine. By implying this model, we can find whether an application is suitable for
Imagine, rather than implementing it on Imagine and then check the performance, which would waste much
time.

Keywords: Stream Processing; Stream Programming Model; Symmetric Cipher; Imagine

1. Introduction
Stanford’s Imagine is the first stream processor prototype [1] which implements the stream model.

Aiming at data level parallel applications, Imagine can fully use the massive on-chip computing elements
and cover memory accessing latency. The programming model of Imagine is Stream Processing, which is
described in [2]. Imagine can satisfy the real-time demands and high computing intensity of multimedia
applications and digital signal processing, which are becoming the most heavily used workload recently. For
example, MPEG-2 encoder on Imagine can get 15.35GOPS, 287fps for 320x288 24-bit images [3]. But how
it works in information security area remains unknown.

Symmetric ciphers are used widely in information security area. In this paper, we implement and analyze
Blowfish, Rijndael and RC5 on Imagine. In these ciphers, one block is encrypted or decrypted each time.
Cipher mode decides the relationship between adjacent blocks. In ECB mode, every block has nothing to do
with others, which shows perfect data level parallelism. We can expect good performance when we use ECB
mode to implement these ciphers.

The most common characteristic of symmetric ciphers is random accessing to a fix-size array. The
efficiency of random accessing determines the run time of the whole application. We’ll research how to
efficiently implement random accessing to arrays on Imagine. Meanwhile, we use Base64, which has no
random access to arrays, to further illustrate the importance of high efficient implementation.

+ Corresponding author. Tel.: +86-0551-3603583; fax: +86-0551-3603583.
 E-mail address: han@ustc.edu.cn.

27

 2009 International Conference on Computer Engineering and Applications

IPCSIT vol.2 (2011) © (2011) IACSIT Press, Singapore

Our test platforms are: general purpose processor (GPP) (AMD Athlon64 X2 Dual Core Processor
3800+ stepping 01, MEM = 2G), Isim (Imagine’s simulator, 500MHz). The experiment result shows that
Blowfish, Rijndael, RC5 and Base64 on Imagine gets speed up 2.4x, 2.5x, 5x and 3x over those on GPP
respectively. By analyzing the experiment result and characteristics of them, we propose a checking model
for choosing applications which can get better performance on Imagine: 1) have massive available data level
parallelism; 2) no random array access or only access an array whose size is smaller than the size of scratch
pad of Imagine. We can decide whether to implement an application on Imagine by using this model rather
than implementing it on Imagine and then checking the performance, which would waste much time.

This paper is organized as follows: in part2, we introduce Imagine architecture and programming model
briefly; then in part 3, we show how we implement Blowfish, Rijdael, RC5, and Base64 on Imagine and the
analysis of the experimental results; in part4, we conclude our work.

2. Architecture and Programming Model of Imagine

2.1. Imagine Architecture
Imagine is a programmable stream processor and is a hardware implementation of the stream model. A

block diagram of the architecture is shown in Fig.1. Imagine is designed to be a stream coprocessor for a
general purpose processor that acts as the host, as seen in the figure. The stream controller sequences stream
commands from the host processor and issues them to the various modules on the chip. All data stream
transfers are routed through a 32 KW stream register file (SRF). The streaming memory system transfers
entire streams between the SRF and off-chip SDRAM. Kernel programs consist of a sequence of VLIW
instructions and are stored in a 2K x 576-bit RAM in the microcontroller. The microcontroller issues kernel
instructions to eight arithmetic clusters in a SIMD manner. Each cluster consists of six ALUs (plus a few
utility functional units) and 304 registers in several local register files (LRFs). The network interface module
routes streams between the SRF of its node and the external network.

Fig. 1: Imagine architecture block diagram.

2.2. Programming Model
The programming model is divided into two level: stream level (using StreamC) and kernel level (using

KernelC). In stream level, programmers define streams and kernels. The kernel size and stream schedule are
their most concerned objects. In kernel level, programmers concern about how to fully use hardware resource
to achieve good performance. Imagine supports ILP by compile kernel into VLIW, DLP by using one kernel
instruction to control multiple computing clusters, i.e. SIMD, and TLP by the overlap of kernel computing
and stream loads and stores between off-chip SDRAM and SRF. Further discussion can be found in [5].

3. Experiments and Analysis

3.1. Brief Introduction to Symmetric Ciphers
In this paper, we implement Blowfish, Rijndael [4], RC5 [6], and Base64 [7] on Imagine. We first

introduce these four ciphers briefly in table 1. While the former three ciphers all need to randomly access a
fix-size array, Base64 doesn’t. We use it as a contrast to the others.

28

Tab. 1: several important symmetric ciphers
Symmetric

cipher
Brief description

Blowfish high-efficient algorithm , widely used in personal information security area.
Rijndael Advanced Encryption Standard. The block and key length can be 16, 24 or 32 bytes. We use 16-

byte block and key. The process of encryption has 10 rounds. In round 1-9, it uses four modules:
subbyte, rotcolum, colshuffle, and addkey. In round 10, use subbyte, rotcolum, and addkey.

RC5-w/r/b Simple, quick but safety cipher, very small memory consumption, can be used in smart card or
other memory-limited device. W, r, b means block length, iteration numbers and key length
respectively. In this paper, w = 32, r = 12, b = 16.

Base64 Used to encrypt emails or webs. Encrypts plain text using cipher table rather key. No need to
randomly access arrays.

3.2. Implementations on Imagine
As we can see, Blowfish, Rijndael, and RC5 all need to access a fix-size array. The most important part

of the implementations of these symmetric ciphers is how to efficiently do random accesses to an array on
Imagine. We use Blowfish as an example to illustrate our method to solve this problem.

By analyzing the Blowfish encryption algorithm, we can see that the pre-processing to produce the P-box
and S-box is a chain process, which can’t implements on Imagine, so we only implement the encrypt
function on Imagine.

In Blowfish, we need to randomly access P-box and S-box frequently. So how we implement these
accesses matters the performance. In order to randomly access the two boxes, we should put them in the
scratch pad (SP) of Imagine in style of array. The size of P-box is 18 words, S-box is 256 words, but the size
of SP is only 256 words, so we can’t hold both of them in SP. In our implementation, we put a whole copy of
P-box and part of S-box in each SP: k-th of S-box stores in sbox_c[k/8] of cluster k%8, as in Fig 2.

Due to the distribute S-box storage, accessing the S-box becomes complicated. Inter-cluster
communication is involved. The S-box item needed by one cluster may be in another cluster, so we need the
permutation intrinsic to get the right item from the right cluster for each one. When we need S-box[k], we
have to get sbox_c[k/8] from cluster[k%8]. Because the data encrypted by each cluster may be different, k on
each cluster may be different too. Meanwhile Imagine uses SIMD manner to control 8 clusters, so we have to
process the S-box random access sequentially. When cluster I need to access S-box, it broadcasts its k to all
clusters, then all clusters do sdata=sbox_c[k/8] operation. After that, they communicate sdata with each other
according to k%8, using permutation intrinsic. But only cluster I replace its own sdata with new sdata
eventually.

Fig. 2: The distributed S-box in Imagine.

3.3. Experimental Result
As showed in Fig.3, Imagine implementation of Blowfish is much faster than AMD implementation, the

speed up is 2.4x. Lots of time is spent on inter-cluster communications to get the right S-box item for every
cluster and the performance is not so well. Actually, if we can modify the hardware of Imagine, things will
be much simpler. When the size of SP is big enough to hold a whole copy of P-box and S-box, the random
accesses to them will be very naïve and efficient. No inter-cluster communication needed. The result shows
the speed up becomes 6x.

There are plenty much of producer-consumer locality among the four modules of Rijndael. [8] points out
that applications with producer-consumer locality seems to easily achieve good performance on Imagine. But
in our implementation, the result is not well enough. By analyzing our implement code, we find the reason is

29

the platform limits. We have to use 32 bit operations, but only use 8 bit result, wasting 3/4 computing ability.
The speed up over AMD implementation is only 2.5x.

Though Base64 is the simplest algorithm to implement on Imagine, its performance is not good enough.
The speed up is about 3x over AMD implementation. We have to do some additional operations when
implement it on Imagine. About 1/4 computing ability is wasted.

RC5 achieves satisfactory result on Imagine, the speed up is 5x, nearly 2 times more than Blowfish and
Rijndael. The array needed to be randomly accessed in RC5 is only 26 words, so it can be put in a SP, which
avoids the communications needed to get Sbox. It doesn’t waste computing ability like Rijndael and Base64.
So it gets the highest speed up.

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

data s et(KB)

tim
e(

s)

GPP 0.035 0.072 0.102 0.136 0.216 0.369

Imagine 0.015 0.030 0.045 0.060 0.090 0.156

Imagine_large_SP 0.006 0.012 0.018 0.024 0.035 0.061

305 710 915 1220 1830 3050
0 .0 0 0

0 .2 0 0

0 .4 0 0

0 .6 0 0

0 .8 0 0

1 .0 0 0

1 .2 0 0

da t a se t (K B)

tim
e(

s)

GP P 0 .0 5 7 0 .1 1 0 0 .2 1 6 0 .4 7 0 1 .0 9 8

Im agin e 0 .0 2 6 7 6 0 .0 5 3 0 4 0 .1 0 5 6 0 .2 1 0 8 2 0 .4 2 1 0 2

1 6 3 2 6 4 1 2 8 2 5 6
0.000

0.050

0.100

0.150

0.200

0.250

da ta s et(KB)

tim
e(

s)

GPP 0.017 0.035 0.052 0.076 0.136 0.211

Imag in e 0.006 0.013 0.019 0.025 0.038 0.063

305 710 915 1220 1830 3050 0.0 00

0 .0 50

0 .1 00

0 .1 50

0 .2 00

0 .2 50

0 .3 00

0 .3 50

dat a se t (K B)

tim
e(

s)

GP P 0 .0 28 0 .0 5 8 0 .0 8 8 0 .1 19 0 .1 6 8 0 .3 1 2

Im agin e 0 .0 0 6 0 .0 12 0 .0 18 0 .0 2 3 0 .0 35 0 .0 61

3 0 5 71 0 9 1 5 12 2 0 1 8 30 3 0 50

Fig. 3: Performance of Blowfish, Rijndael, Base64, RC5 on Imagine and GPP.

3.4. Result Analysis
The experiment result shows that Blowfish, Rijndael, RC5 and Base64 on Imagine gets speed up 2.4x,

2.5x, 5x and 3x over those on GPP respectively. To understand the performance improvement, we must
compare the architecture differences between Imagine and GPPs. We carefully compare the differences in
three aspects: 1) arithmetic to memory bandwidth ratio, DLP applications naturally need high arithmetic to
memory bandwidth ratio; 2) on-chip memory system, whether locality in applications can be caught by
hardware and software system heavily depends on the on-chip memory system; 3) the overlap of computing
and memory access, the more overlaps, the less execution time.

• Imagine’s arithmetic to memory bandwidth ratio is much higher than GPP’s. The former is about
20:1 [8], while the later is only 4:1 [9]. By using DLP(8-way SIMD) and ILP(6-way VLIW), the 48
computing ALU can keep busy and many memory accesses are reduced.

• Imagine has software controlled SRF. Locality in kernel and producer-consumer locality between
kernels can be caught by Programmers and compiler. GPP’s cache can’t do this job well.

• The overlap of computing and memory access can be well achieved in Imagine. By scheduling stream
loads and stores to hide latency, the Imagine memory system can be designed to provide the average
bandwidth required by applications without loss of performance. In contrast, GPP are highly sensitive
to memory latency and hence providing memory bandwidth well in excess of the average is required
to avoid serialization latency on each memory access. Although the memory system of a conventional
processor is idle much of the time, reducing its bandwidth would increase memory latency and hence
increase execution time.

However, when an application needs to randomly access an array (larger than SP), implementing it on
Imagine will be a problem, and the performance is relatively lower. The 8 clusters in Imagine all controlled
by the microcontroller, though which they communicate with each other. One cluster can’t access other
clusters’ data directly. Just like Blowfish, when the array’s size is larger than SP’s, it must be distributed
among 8 clusters. This increases programming complexity and decreases performance. Therefore, we can
conclude that whether an application is well suit for Imagine depends on:

• Is there data level parallelism in the application? Or can data elements be processed in parallel?
• Do we need to randomly access an array in the kernel? If yes, can we put a copy of it in every cluster?

4. Conclusion
In this paper, we implement Blowfish, Rijndael, RC5, and Base64 on Imagine. We compare the

performance of Imagine implementations and GPP implementations. By analyzing the experiment results
and characteristics of applications, we propose a checking model for choosing application which can get
better performance on Imagine: 1) it has plenty much of available data level parallelism; 2) it doesn’t need to
randomly access an array, or it needs to, but the array’s size is smaller than SP’s. For these applications,
good performance is easily to achieve.

30

In information security area, symmetric ciphers are widely used. Imagine achieves good performance in
this area while keeps the programmability. But most symmetric ciphers are involved with random accesses to
an array. Small SP in Imagine put a limit on the array’s size and therefore some applications can’t be
implemented on Imagine. This limit is eliminated in Merrimac which has a larger SP and supports random
access SRF. Evaluating the performance of symmetric ciphers on Merrimac [10] would be our next work.

5. Acknowledgements
This research was supported financially by the National Basic Research Program of China under contract

2005CB321601, the Natural Science Foundation of China grant 60633040 and 60736012, the National Hi-tech
Research and Development Program of China under contract 2006AA01A102-5-2 and 2009AA01Z106, the China
Ministry of Education & Intel Special Research Foundation for Information Technology under contract MOE-INTEL-
08-07.

6. References
[1] Ujval J. Kapasi, William J. Dally, Scott Rixner, et al. The Imagine Stream Processor. In: Proceedings of the 2002

International Conference on Computer Design, September. 2002, pp.16-18.

[2] Peter Mattson. A Programming System for the Imagine Media Processor. Thesis, Dept. of Electrical Engineering,
Stanford University, 2001

[3] John D.Owens, Scott Rixner, Ujval J.Kapasi. Media Processing Application on the Imagine Stream Processor. In:
Proceedings of the 2002 International Conference on Computer Design. September 16-18. 2002, Freiburg,
Germany, pp. 295-302.

[4] William Stallings. Cryptography and Network Security. Nov. 26. 2005, pp. 102-172.

[5] Peter Mattson, Ujval Kapasi, John Owens. Imagine Programming System Developer’s Guide. April 3. 2002.

[6] R. Baldwin, R. Rivest. RFC2040 ——The RC5, RC5-CBC, RC5-CBC-Pad, and RC5-CTS Algorithms. October
1996.

[7] N. Freed, N.Borenstein. RFC2045——Multipurpose Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies. November 1996.

[8] Jung Ho Ahn, William J. Dally, Brucek Khailany, et al. Evaluating the Imagine Stream Architecture. In:
Proceedings Of the 31st Annual International Symposium on computer architecture. June. 2004, pp. 14- 25.

[9] D. Sager, et al. A 0.18μm CMOS IA32 microprocessor with a 4GHz integer execution unit, In 2001 IEEE
International Solid-State Circuits Conference Digest of Technical Papers. February 2001, pp. 324–325.

[10] William J. Dally, et al. Merrimac: Supercomputing with Streams. In: Proceeding of the SC 2003. ACM Press, Nov.
2003, pp.15-21

31

