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Abstract. Precoders are designed at the transmitter to compensate the antenna correlation effect when 
space-time coding is used. In this paper, a linear precoder is designed for a new class of non-orthogonal 
space-time block codes called perfect space-time block codes (PSTBC). The word "perfect" stands for some 
remarkable characteristics such as full diversity, full rate and non-vanishing constant minimum determinant 
for increasing spectral efficiency. The performance of the system is degraded in the spatially correlated 
channel condition, therefore, we investigate the effect of channel correlation on diversity and coding gain of 
PSTBC. Furthermore, the precoder is calculated based on the knowledge of the matrix of correlation and the 
channel mean in order to minimize the pair-wise error probability (PEP) criterion. Simulation results 
demonstrate that using the proposed precoder improves the performance of PSTBC system in correlated 
channels. 
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1. Introduction  
Recent advances in wireless communications have dramatically increased the performance and reliability 

of wireless systems and different approaches have been proposed for this progress. One of these concepts is 
multiple-input multiple-output antennas (MIMO) structure in which space-time coding that can be used to 
achieve higher performance, throughput and coding gain and Space-time block coding (STBC) was first 
introduced by Alamouti [1] and Tarokh [2],[3].  

Perfect STBC is a class of non-orthogonal STBC that satisfies full rate, full diversity and non-vanishing 
constant minimum determinant properties for increasing spectral efficiency[4]. No orthogonal STBC 
schemes exist that can satisfy both full-diversity and full-rate transmission features. In other words, there is a 
fundamental tradeoff between these two gains [10]. On the other hand, The code design criteria in [2] and [3] 
assume that the transmit and receive antennas are uncorrelated. This may not be accurate in practical 
situations that MIMO antennas are correlated, due to the lack of spacing between them. The effect of spatial 
correlation on the MIMO channel capacity has been addressed in [5]. A linear precoder was calculated in [6] 
for orthogonal-STBC and In [7] for quasi orthogonal case. In [8] an approximated solution was given for the 
case of non-zero means. In our previous work [9], we investigated the performance of constructing and 
decoding of perfect space-time block codes in the presence of channel estimation error and multiple access 
interference in a multiuser MIMO downlink scheme applicable to CDMA systems. 

    In this paper, we investigate perfect STBC and its diversity and coding gain in the situation of channel 
correlation and finally we recommend a linear precoder for this system. We assume the knowledge of the 
transmit antenna correlation and also channel mean in the transmitter and improve the performance of a 
space-time coded system in this situation.  

   The rest of the paper is organized as follows. Section 2 describes the system model. In section 3 cyclic 
algebras and perfect space-time block codes are considered. In section 4 the diversity and coding gains will 
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be discussed. In section 5 precoding design is defined. The simulation results are presented in section 6. 
Finally Section 7 concludes the paper. 

2. Overview of the System Model 
We consider a system, with TN transmit antennas and are RN receive antennas as depicted in Fig.1. In 

such a system, the precoder can be viewed as a processing block in addition to an existing STBC. Therefore 
we have  Y E HFC Ns= +  Where Y is an RN T× matrix that includes all received signals during T 
time slots; X is an TN T×  matrix that includes all transmitted signals and H is the channel matrix. Also C is 
the coded stream and F is the precoding matrix which will be discussed later. The receiver performs 
maximum-likelihood (ML) detection over a codeword C to obtain  

2ˆ arg min FC
EsC Y HFC

∈
= −

�
                                           (1) 

 where � is the STBC codebook, and the subscript F denotes the Frobenius norm. In practice, there can 
be a correlation between the transmit antennas. Therefore, the channel can be modeled as below 

1 1
2 2

m r w tH H R H R= +                              (2) 
Where wH is an R TN N×  i.i.d. complex Gaussian matrix with zero mean and unit variance, mH  is 

the channel mean matrix and 1 1
2 2 H

t t tR R R=  is the transmit antenna correlation and 
1 1

2 2H
r r rR R R=   is 

the receive antenna correlation. A common, simplified correlation model assumes that the correlation 
between the receive antennas elements does not depend on the transmit antennas and vice versa. In other 
words, transmit and receive correlations are separable and uncorrelated. This assumption can be justified by 
the fact that these arrays are sufficiently far apart with enough random scattering between them [5].  

In this paper, we focus on correlation at the transmitter, and we assume no correlation in the other side of 
the link. Thus, the channel model in this environment is reduced to 

1
2

m w tH H H R= +                            (3) 
The receiver is assumed to know the channel perfectly, i.e. it knows the channel realization whereas the 

transmitter only knows the channel mean and the transmit correlation. 

 
Fig. 1.System architecture with a linear precoder and STBC 

3. Cyclic Algebras and Constructing Perfect Space-Time Block Code 
The major structure of Perfect STBC comes from cyclic division algebra. They enable us to design high 

rate, highly reliable Space-Time codes, which are characterized by many optimal features. Their algebraic 
properties can be exploited to improve the design of good codes. Perfect space-Time block codes are defined 
as below [4]. A T TN N× STBC is called a perfect code if and only if: 

• It is a full rate linear code using 2
TN information symbols either QAM or HEX. 

• The minimum determinant of the infinite code is non-Zero, so that the rank criterion is satisfied. 
• The energy required to send the linear combination of the information symbols on each layer is 

similar to the energy used for sending the symbols themselves. 
• It induces uniform average transmitted energy per antenna in all T time slots. 

Given a field F, let K be a cyclic extension of F of degree n, i.e. Gal(K/F)= σ〈 〉 where σ  is a generator 
of the cyclic group and a cyclic division algebra ( / , , )D K F σ γ= is the set of all elements with above 
form. Hence, for some "non-norm" element ∗∈ Fγ , γ=ne  and Kx ∈∀ , )(1 xxee σ=−  and for Dx ∈  
and Kxi ∈ . This "non-norm" choice is a key factor in designing non-vanishing determinant cyclic division 
algebra codes. These codes are a special class of codes which use algebraic number-theoretic constellations 
as component codes. In the general case of degree n, we have Dxi ∈ and so [12]  
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And finally [9],[13]             
1

1

( ) ( )
RN

l
l l

l

X e d iag M bφ −

=

= ∑                             (6) 
Where e  is defined by using (5), lb  is a complex QAM vector, lφ  is chosen to ensure full diversity and 

maximize the coding gain [14], M is defined in [17] and γ is a non-norm element of the division algebra 
satisfies 1γ = . For Perfect STBC, equation (6) is used with 1φ =  and equation (5) is reconfigured with 

j=γ . Although [4] proposes an algorithm for constructing perfect codes for dimensions of 2 2, 3 3, 4 4× × ×  
and 6 6× , it is shown that by exploiting some relaxation methods for the definitions, perfect space-time 
codes can be obtained for any number of antennas [17]. 

4. Diversity and Rate Considerations 
It has been shown [10] that codes constructed from cyclic division algebras with non-vanishing 

minimum determinant achieve the Diversity vs. Multiplexing Gain tradeoff. The performance of STBC 
directly depends on the diversity and coding gain which are attained by the rank and eigenvalues of the code 
error covariance matrix [16]. When the channel is i.i.d, the maximum diversity is attained if the error matrix 
is full rank [2] as

ˆ
ˆ( ) T

c c
rank c c N

≠ ∈
− =
�

. This equation can be reformulated as [4] saying that the codebook is full 
diverse if 2

ˆ

ˆdet( ) 0
c c

c c
≠ ∈

− ≠
�

. For maximizing the throughput the code should be full rate, for example in a 
four symbol constellation the four symbols in the codewords are functions of four symbols independently 
chosen such that 4γ=� . The asymptotic coding gain is given by the minimum determinant of �  as 

2
min

ˆ( ) min det( )
i jx x

c cδ
≠ ∈

= −
�

� . A good Perfect STBC attempts to maximize min ( )δ � .  
We consider the pairwise error probability (PEP) as the performance criterion, which is the probability 

that a transmitted codeword has a worse detection metric than another codeword. Solving the exact PEP is 
very complex. Hence, by applying the Chernoff bound, similar to [2], the PEP can be bounded by 

2

2

ˆ( ( ) )

4
ˆ( ) exp s F

E HF C C
P C C σ

−
→ ≤

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠

                                                  (7) 

The average PEP can be written as ( )ˆ( | )HPEP E P C C H= → . By exploiting the Gaussian pdf and after 
averaging, the PEP bound is achieved which will be discussed in details in section 5. In this case, the 
diversity and coding gain (which depends on the rank and the product of non-zero eigenvalues of code error 
covariance matrix A in i.i.d situation), depends on the interaction of the error matrix and the channel 
correlation matrix in correlated channels. In [16] this situation is analyzed for orthogonal STBCs with the 
virtual channel representation [20] and proved that this interaction is governed by the property of  

( )NR
R A I⊗  in which  ( )HR E hh=  where ( )h vec H= and A is the error covariance matrix. In correlated 

channels, the diversity gain is no longer controlled by above equation and is defined as the rank of 

( )
RNR A I⊗ and is bounded as 

 d=rank( ( )) min(rank(R),rank( )) =min(rank(R), �
R RN N RR A I A I N⊗ ≤ ⊗     (8) 

  The above expression demonstrates that the diversity gain is no longer directed by the rank of matrix A, 
i.e. the case of uncorrelated channels, but also that of channel covariance matrix. Using Perfect STBC and 
the above correlation model for the channel, we proved the same result.  

5. Precoding Design 
Consider the PEP with ML detection and following the algorithm proposed in [21] and exploiting it for 
Perfect STBCs, an effective precoder is designed. The codeword distance product matrix is defined as 
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1 ˆ ˆ( )( )A C C C C
P

∗= − −  Where P is the average transmit power and 2
P

σρ =  is the SNR. The Chernoff bound 

can be re-written as [21]:   

( , , ) exp ( )
4

f H A F tr HFAF Hρ ∗ ∗⎛ ⎞= −⎜ ⎟
⎝ ⎠

                                       (9) 

We aim to minimize the Chernoff bound on the mentioned PEP. Since the PEP is codeword-pair 
dependent, an appropriate design method is needed for selecting the codeword distance product matrix over 
which the PEP is going to be optimized [2],[6]. An optimization problem can be formulated as follows [8,21] 

1( ) log det( )m mJ tr H W H M W− ∗= −                                (10) 

Subject to         
4 t t tW R FAF R Rρ ∗= +         ,   ( ) 1tr FF ∗ =        and        ( )tr FAF γ∗ =       (11) 

Where γ  is a positive constant. It can be proved that the largest desirable and feasible γ  is [21] 
( ) ( )i ii
A FFγ λ λ∗ ∗=∑                                                  (12) 

After some calculations and by exploiting convex optimization and relaxation methods, F is equal to [21] 
1 1
2 2

B AB AF U U− ∗= Λ Λ                                                            (13) 
 Where B FAF ∗= and AU and AΛ can be obtained from eigenvalue decomposition (EVD) of A and B 

(similar to [21]). We pass over the details as we are in the lack of space.  

6. Simulation Results 
In the simulations, it is assumed that the receiver perfectly has the channel knowledge and the transmitter 

only knows the mean and the correlation state of the channel. We assume that the total transmit power across 
all transmit antennas is unity. We use the ML decoding algorithm as an efficient and classic solution; 
however perfect space-time codes can be detected by sphere decoding [13] or other efficient and less 
complex methods such as MMSE-DFE-Fano decoders [18]. Fig. 2 demonstrates the BER performance of a 
system with Alamouti scheme in the presence of channel correlation. In Fig.3 and Fig.4 the correlation is 
calculated for 0.5ρ =  and 0.8ρ = . Fig. 3 shows the BER for the i.i.d case, the cases with correlation and 
with precoding using a codeword error matrix for the Golden code. In Fig. 4, the BER performance is 
depicted for a 4 4× perfect space-time block code. Clearly, Linear Precoding outperforms the correlated 
situation. This procedure can be used where this class of STBC is exploited for avoiding channel correlation. 

 
 
 
 
 
 
 
 
 

  
 

7. Conclusion  
In this paper we proposed a linear precoder for a perfect STBC MIMO system, in the correlation channel. 

MIMO antennas are normally correlated, due to the lack of spacing between them and this effect reduces the 
performance of the system. On the other hand the correlation phenomenon degrades the main characteristics 
of perfect codes; i.e. full diversity and full rate. In this contribution, we investigated the effect of channel 
correlation on diversity and coding gain of these codes. Afterwards, we designed a precoder for the PSTBC-

Fig. 2. Alamouti's scheme in the 
presence of channel correlation 

Fig. 3. Golden code( 2 2× ) in the 
presence of channel correlation 

Fig. 4. 4 4× Perfect STBC scheme in 
the presence of channel correlation 
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based system to compensate the performance degradations due to correlation effects. Simulation results 
demonstrated that using the proposed precoder improve the performance of this system in correlated channel. 
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