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Abstract. With more cores integrated into one chip and multiple threads running concurrently on the chip, 
power consumption from the running threads increases dramatically, and then causes the thermal of the chip 
going much higher than before. Existed schemes to leverage the thermal problem for a chip multicore 
processor include DVFS, Clock Gating, thread migration, and so on. In this paper, we propose a new 
architectural method to address the thermal problem from another perspective, the floorplan of the multicore 
chip. Our method exploits the heat spreading model of a chip and tries to come up with a floorplan for a 
multicore processor which leaves the potential hotspots in different cores as far away from each other as 
possible. As an example, we show heat spreading aware floorplans for a four cores' processor and a sixteen 
cores' processor respectively. Coupling with the proposed floorplanning scheme, we propose a thermal aware 
thread mapping policy for the multicore processor. Trace-driven experiment results show that a processor 
with our floorplanning scheme always has lower/not higher peak temperature than the baseline processor, 
and further a processor using our thread mapping policy can have very good average and peak temperature 
among all the tested mapping schemes. 

Keywords: Chip Multicore Processor, thermal, floorplan  

1. Introduction 
Chip multicore processor (CMP) has become the dominate architecture in computer industry and academic 

research literature. Quad core processor from Intel has been widely used in normal life, and the processor 
with eight cores and sixteen cores can be seen in not far away future.  

With more cores integrated into one single chip, more and more threads can run concurrently on the chip. 
The parallel multiple threads running can dramatically increase the overall throughput of the processor 
through exploiting the different levels of parallelism. Whereas at the same time, power consumption from the 
running threads also increases largely which causes the chip temperature goes much higher than that in a 
traditional superscalar single core processor. 

A chip multicore processor can have instantaneous hardware errors if the temperature surpasses the 
thermal limitation of the processor, or even broken if the temperature continuously goes up. In industry and 
academic research literature, some techniques are proposed and used to leverage the thermal problem of a 
chip multicore processor. Typically, Dynamic Voltage Frequency Scaling (DVFS) [1] decreases the supply 
voltage and operating frequency of a chip when the detected temperature is higher than the pre-defined 
thermal threshold, and after a period of interval when the temperature returns back to the safe region then 
increases the voltage and frequency step by step. Clock Gating [2] is to turn off the hot cores through turning 
off the clock thus that the static leakage power and dynamic power can be removed totally from the cores, 
and causes the temperature dropping down. Thread migration [3] is another scheme to leverage the thermal 
problem which tries to distribute the power dissipation from the running threads over the whole chip through 
migrating them over the chip. Although these techniques can relieve the thermal problem of a chip multicore 
processor, they also decrease the overall throughput of the processor or the performances of some specific 
programs when exploiting them.  
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    In this paper, we propose another orthogonal method which can help to address the thermal issue of a 
chip multicore processor. Our scheme is based on the observation that heat is another shared resource in a 
multicore processor. Each running thread contributes its own heat resource to the whole chip, and the heat 
will dissipate to the other cores and cause their temperature going up. On the other side, no matter whether a 
core has a thread running on it or not it can consume or absorb some heat resource from other cores and help 
to decrease their temperatures as a result. Under these two opposite effects, a chip multicore processor shows 
its final temperature to the out world. Using this heat dissipating model, our method tries to come up with a 
floorplan for a chip multicore processor which keeps the potential hot spots in different cores as far away as 
possible thus that maintains a longer heat dissipating distance among the hot spots in order to obtain a lower 
average temperature or a peak temperature for the processor. Figure 1 shows the rationale of this idea. Four 
possible floorplans for a two cores chip multicore processor are shown in Figure 1. Each core has an Alpha 
EV6 [4] structure. Suppose the hot spots occur at the red circular area. Floorplan A is a common floorplan in 
nowadays 2 cores processors, such as Intel Core Duo and AMD Dual-core. Among them, floorplan D has the 
longest distance for the potential hot spots such that the heat generated by two running threads in the cores 
can be more easily distributed on the chip and thus should has lower average temperature than the others. 
When running a same two threads workload in these two processors at same conditions, processor with 
floorplan D has lowest average temperature than the compared others because of the smallest hot area. 

Due to hardware implementation complexity, we keep our method in the core granularity and do not go 
more deeply into functional unit granularity. But we believe this long heat spreading distance principal 
should always be considered when floorplanning for multicore processor, single core processor, and 
embedded processor if thermal issue is a key parameter for the processor. Another reason we do not consider 
this in functional unit level is because that different programs have different thermal behaviors, and too fine 
granularity may not fit different thermal characteristics of different programs. 

Coupling with our floorplanning method, we also propose a thermal aware thread mapping policy for 
chip multicore processor. The basic idea is to try to benefit most from our proposed floorplan and map 
running threads to different cores according to their thermal characteristics such that the hot spots can be 
kept as far away as possible and the average or peak temperature of the chip can be lower. 

The main contributions of this paper are: 
a. Showing that considering and analyzing heat spreading behaviours during processor floorplanning 

process is very important to the final run-time temperature of a chip multicore processor. 
b. Propose a heat spreading model based floorplan scheme for chip multicore processor. With the 

proposed floorplan, the average and peak temperature is lower or at least not higher than the other floorplans 
at most of the time if without any thermal aware thread mapping policies. 

c. Propose a thermal aware thread mapping policy which benefits from the proposed floorplan method 
and can obtain a reasonable better average and peak temperature than the other tested mapping schemes. 

d. As an example, conduct simulation experiment for four cores and sixteen cores processor, and 
compare the proposed floorplan method with other floorplans. Experiment results show that in a four cores 
processor (a) one thread workload has same temperature as that in other floorplans, (b) two and three threads 
workload always have lower temperature in our floorplan, and (c) four threads workload has lower average 
temperature if mapped using our mapping policy. And similar results can also be observed in sixteen cores 
experiments. 

(a)                                (b)                                 (c)                                   (d)
Figure 1. Steady-state temperatures of two gzips running in a two cores processor with four different floorplans. 

The other parts of this paper is organized as follows: Section 2 presents our heat spreading model based 
floorplanning method, Section 3 gives our thermal aware thread scheduling policy, Section 4 describes 
experiment methodology and results,  Section 5 discusses the related work, and Section 6 concludes this 
paper.
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2. Heat Spreading Model Based Floorplan

2.1. Thermal Characteristics of Programs
In this subsection, we use SPEC CPU2000 benchmarks [5] as our workload to show the thermal 

characteristics of different programs. Experiments are done through a cycle-by-cycle accurate simulator, 
sim-alpha [6]. We add power model [7] and thermal model [8] in this simulator, and run 26 programs from 
the benchmark suite for 0.07s in a single core processor after fast forwarding different number of instructions 
using the technique similar as [9]. We collect the instantaneous temperatures of each function unit during the 
running period. The details of the simulated single core processor can be seen in Table 1.  

Figure 2. Thermal characteristics of 26 SPEC CPU 2000 benchmarks in a single core processor. 
Figure 2 shows the different thermal behaviors of 26 SPEC CPU 2000 benchmarks during the running 

period (the sample interval is 0.001ms). The thermal values are relative temperatures rise above the ambient 
temperature (35 oC in our experiments). It can be seen that eight out of twenty-six programs (applu, bzip2,
equake, facerec, gcc, gzip, mgrid, and parser) have very irregular thermal behaviors during the short running 
period and on the contrary other programs have relative regular ones. Thus the programs with irregular 
behavior call for finer granularity thermal management in order to avoid surpass the thermal threshold. For 
the regular ones, ten programs (ammp, art, crafty, eon, fma3d, perlbmk, sixtrack, twolf, vortex, and wupwise)
are hot threads and have relative high average and peak temperatures that need to be scheduled or mapped 
smartly if they are running concurrently in a chip multicore processor in order to avoid the potential hotspots. 
And other four programs (lucas, mcf, swim, and vpr) are cold threads and can be used to absorb heat flux 
from co-running hot threads. Other four programs (apsi, galgel, gap, and mesa) change the thermal faces 
dramatically during the running period that also need a smart scheduling or mapping scheme. 

When considering the different units in a core, L2 cache always has the lowest temperature. This is due 
to L2 cache has a big area on the chip, and the heat generated by L2 itself and the heat coming from other 
functional units can be dissipated easily into the air and thus causing the temperature dropping down. 
Similarly, Icache, Dcache, DTB, register file, and execution units have high temperatures due to high access 
frequencies and small areas. 

2.2. Relationship between Floorplan and Temperature 
Most of the existed thermal aware floorplanning methods only work in a single core processor, such as [10, 

11]. They try to find good block level placement for all the units in a processor in order to decrease the peak 
temperature. Few researches have done on a core level for a chip multicore processor. [12] adjusts the 
placement of multiple cores for performance gain but not for temperature. Our work in this paper is to do 
thermal aware floorplanning in core level for a CMP processor. Thus this section will present the relationship 
between different floorplans and the corresponding temperatures.

As shown in Figure 1, different floorplans in a two cores processor have different average and peak 
temperatures due to the heat spreading among the two cores. The longer is the distance between the hot spots 
in two cores, the lower is the temperature. The difference of the steady state temperature can be as high as 12 
oC and 3 oC for peak and average temperature respectively in the experiment. Similar results can be seen in a 
four or sixteen cores’ processor. These results show the importance of floorplanning in core level for a CMP 
processor.

The rationale behind the experiment result is similar as that in previous researches for single core 
processor. For a single core processor, the maximum temperature of a block depends not only on its own 
power density (power consumption over the area) but also on the power density of the adjacent blocks. 
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Similarly, the maximum temperature of a core in a multicore processor depends not only on its own 
temperature, but also on its adjacent cores. So leaving potential hot spots in different cores as far away as 
possible is better for the temperature over the whole chip. 

                                                   (a)                               (b)                               (c) 
Figure 3. Baseline floorplans (a and b) and rotate based floorplan (c) for a four cores’ processor. 

                     
(a) (b)

Figure 4. Baseline floorplan (a) and rotate based floorplan (b) for a sixteen core’s processor. 

2.3. Heat Spreading Aware Floorplanning 
In this subsection, we use the analytical model in [8] as our heat spreading model to further understand 

the thermal behavior of a chip multicore processor. In [8], the power dissipated in transistors and wires is 
modeled by a prescribed heat flux q(x, y, t) depending on time t and representing the 2D power density in the 
plane, and for a specific point heat source the temperature on the plane is a function of the distance from the 
point position and as a function of time. When multiple heat sources exist, the final temperature can be 
computed using space and time convolutions from all the heat sources. So for a microprocessor temperature 
model is the measurement of the effects of the different temperature sources on a chip over time. 

In the following paper, we use the functional unit model instead of grid model in [8] to represent a 
processing core as well as a chip multicore processor in order to save simulating time, but this simplicity 
does not affect our conclusion because our method is orthogonal to theses models. In functional unit model, 
heat generated in a function unit is assumed to be distributed evenly over the whole area of the unit, and the 
temperature of the unit is measured at the centre point the unit. 

Based on the thermal behaviors in subsection 2.1 and heat spreading model above, we propose a novel 
rotate based multicore processor floorplanning scheme. The basic idea is to keep potential hot spots (the 
function units that have high temperature, such as Icache, Dcache, DTB, register file, and execution units in 
Alpha EV6 core) in each core as far away as possible such that providing more opportunities to decrease the 
overall temperature of the whole chip. We do not consider the placement of blocks in a single core in this 
work because they have done by previous works. Also, we do not consider the interconnection of cores 
because it is out of the scope of this paper. 

For a two core’s processor, a rotate based floorplanning will give placement of cores as shown in Figure 
2.d. Similarly, three possible floorplans for a four core’s processor are shown in Figure 3, and our proposed 
floorplan is Figure 3.c. The difference between floorplan a and b is the placement of L2 cache. Floorplan b is 
reasonable in terms of implementation complexity. And the difference between floorplan b and c is the 
orientation of four separate cores. The rotation in floorplan c has more opportunities to smartly map threads 
into the cores in order to obtain a lower temperature due to the longer heat spreading distances. 

Similarly for a sixteen cores’ processor, there are many possible placements in core level. In Figure 4, we 
only show our baseline floorplan and our proposed rotate based floorplan. Our rotated floorplan tries to 
distribute the potential hot spots in the sixteen cores more evenly among the whole chip at the same time 
expose the hot regions of the cores at the edges close to the ambient environment. According to [13], this 
placement is better for the overall temperature. 

For a CMP processor with more than sixteen cores, if the designers want to exploit our method they must 
consider different rotating possibilities and decide which one has the longest heat spreading distance among 
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the cores. The principle of design and selection will same as four cores and sixteen cores cases above. In this 
paper, we only use four cores and sixteen cores processor to explain our idea. We believe this idea should be 
considered in the design process of every chip multicore processor if temperature is a key issue for the 
processor.

3. Thermal Aware Thread Mapping Police 
The temperature of a core in a CMP processor depends not only on the thread running on itself but also 

on the threads running on adjacent cores. To avoid hot spot due to inappropriate mapping two hot threads in 
two adjacent cores, a thermal aware thread mapping policy for CMP processor is needed. It is known that 
thread mapping/scheduling is a NP-Complete problem [14, 15]. In this section, we propose a simple greedy 
algorithm as shown in Figure 5 to get a sub-optimal placement for the running threads in a CMP processor. 
The complexity of our algorithm is O( ) where n is the number of cores and m is the number of threads 
being mapped. 

mn�

The timing to make a new mapping using above algorithm has three options. One is the end of a fixed 
scheduling interval. Two is the time when a new thread comes in the running group. And third is the time 
when a thermal monitor detects a thermal face change of a running thread. The first two options do not need 
add any other support in existed hardware and software system. But the last option needs an extra thermal 
monitor mechanism in existed system. 
 [Algorithm]:

Let S is the set of current running tasks and ordered by the temperatures during last sample interval; 
Let C is the set of available cores that can be mapped into tasks; 
Let M is the set of pairs of {Cores, Temperature} that have been mapped into tasks; 

C = {all the cores in a CMP processor}; 
M = NULL; 
While (S not Empty) do 

 Take a task T which has the highest temperature in S;
WSP = -1;    /* WSP is the weighted shortest path from core A to core B */ 
Cs = -1; 

 For all c in C do  /* ordered by row major */ 

  /*D�
�

�

��
Mm

i
mcmc DeTemperaturWP

1
_ c_m is the distance between core c to core m */ 

  If (WPc <= WSP) Then 
Cs = c;
WSP = WPc;

  End If 
 End For 
 Delete Cs from C;
 Add {Cs, Temperaturec} to M;
 Delete T from S;

End While  
/* Now M is the new mapping scheme */ 

Figure 5. Thermal aware thread mapping policy.

4. Methodology 
We use sim-alpha to run 26 SPEC CPU programs and collect the instantaneous power density values 

during the predefined 0.07s running period. The parameters of single core are shown in Table 1. To build a 
chip multicore processor, we compose multiple same single cores to construct a multicore chip. Hence, our 
multicore chip is a homogeneous CMP. We do not consider heterogeneous CMP in this work. Also, we do 
not address the interconnecting issue among the cores at here.  

Temperatures of multicore processor are simulated using the analytical model in [8] through feeding the 
power density values of each thread in a workload and a designed floorplan for the processor. We construct 
two, three, and four threads workloads as shown in Table 2 separately according to their different thermal 
behaviors for the simulated four core’s CMP processor and compare the average and peak temperatures of 
the baseline floorplan and our proposed floorplan. The average and peak temperature are computed using the 
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following formula (1) and (2) and the Tij is the temperature of function unit j in core i. Also, we do the 
similar experiments for a sixteen core’s processor.  

We compare the different mapping schemes in a sixteen core’s processor. Hundred and ten different maps 
for the eight threads workload listed in Table 2 are generated using a random technique, and compare the 
average and peak temperatures with our proposed thermal aware mapping policy. Also, we construct one 
twelve threads workload and one sixteen threads workload that each workload includes the smaller one. 

Table 1. Parameters of a single core in simulated CMP processor. 
Parameter  Value  
frequency  3GHz  
fetch queue  16 entries  
fetch/slot/map wid.  4 inst  
issue width  4(int)/2(fp)  
Reg  128(int,fp), 2 cycles lat.  
ld/st queue  32/32 entries  
functional units  4 INT ALU’s, 4(INT mult/div), 1 FP ALU, 1 FP mult/div 
Icache/Dcache/L2  64/64KB/2MB, 2/2/4 way, 64B block, LRU, 1/3/10 cycle lat.  
memory latency min 166, max 255 cycles  
itlb/dtlb  2KB, 4way, 1 cycle lat.  
pipeline depth  16  
branch predictor  bimod/gshare comb. 16KB, 64RAS 

kn
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Temp

n
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j
avg �

�
��
� �1 1                    (1)                   )( ijpeak TMAXTemp �              (2) 

Table 2. Workloads in the experiments (H: hot, M: middle, and C: cold). 
Workload Type 

art-ammp, applu-gzip, mcf-lucas HH, MM, CC 
apsi-fma3d-swim, art-perlbmk-equake HMC, HHC
art-art-art-art, apsi-mesa-fma3d-art, apsi-mcf-art-lucas 
fma3d-gzip-mcf-mcf, sixtrack-eon-parser-vpr,mcf-mcf-mcf-mcf 

HHHH, HHMH, HCHC  
MMCC, HHMC, CCCC 

art-applu-crafty-facerec-fma3d-mesa-perlbmk-twolf 
(above)+galgel_vortex_swim_mcf 
(above)+eon+wupwise+gzip+gap 

HLHMMHHM 
(above)HMCC
(above)MMMM 

5. Experiment Result 

5.1. Four cores experiment result
(a) Two threads workload 
Figure 6.a shows the relative average and peak temperatures (relative to ambient temperature, same in the 

following figures) of three two thread workloads running in a four core processor with different floorplans 
(Shown in Fig. 3). X axis is the number of sample points in time, and the sample interval is 0.01ms, same in 
the following figures. Also, we only show the result of one baseline because the values of the two ones are 
very close. The blue line represents the results of our proposed floorplan.  

         
                          (a)                                                                (b)                                                            (c) 

Figure 6. Average and peak temperatures of 2 (a), 4 (b)and  3 (c) threads’ workloads. 
When two threads are scheduled to run in core 0 and core 1, the peak temperatures of the three workloads 

with our floorplan are lower but close to the ones with the baseline floorplan. This is due to the little longer 
dissipation distance between the two threads in our floorplan. And because some of the heat is transferred to 
the other components in the same chip, the average temperature has a little increasing.

Similarly, when two threads are scheduled to run in core 0 and core 2, our floorplan provides even longer 
heat dissipating distance when compared with baseline floorplan and the above core 0 and core 1 mapping 
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scheme. So for the same three workloads, the peak temperature shows a little bit more decrease than the 
baseline and the previous result although the absolute value is still less than 1 oC. Further more, the average 
temperatures also decrease and are lower than the baseline. 

When the threads are scheduled to run in core 0 and core 3, our floorplan has the same heat dissipating 
distance as the baseline thus the average and peak temperatures are totally same for the three workloads. 

In summary, when the four cores processor has less work stress, our proposed floorplan always has lower 
or not higher peak temperature than the baseline, and when combining with a good mapping scheme it also 
has less average temperature for the processor.  

Decreasing the peak temperature is the key objective of our floorplan because it can reduce the number of 
triggering of the DTM (Dynamic Thermal Management) techniques and thus decreasing the performance 
losing caused by the DTM. Our floorplan does not introduce any implementation complexity, just rotate and 
can has lower peak temperature than the baseline although the absolute value is not high. 

(b) Three threads workload
Figure 6.c shows the three threads workload experiment results. In this case, we do not have other 

mapping possibility for our floorplan. Similar as in two threads experiments, our floorplan always has lower 
peak temperatures for the three workloads and a little bit higher average temperatures due to the heat 
dissipating to the other components in the same chip. 

(c) Four threads workload
Figure 6.b shows the experiment results of four thread workloads. The trend is same as the two and three 

thread experiments. The peak temperatures of our floorplan are lower than the baseline and close to 1 oC
decreasing for some high temperature stress workloads. And the average temperature is a little bit higher 
than baseline result due to the same reason as in previous experiments. 

In summary, our heat spreading based floorplan can effectively decrease the peak temperature of the 
processor, and the absolute decreasing value goes up with the increasing of the number of concurrent running 
threads. And due to the heat dissipating to the other components in the same chip the average temperature 
increases slightly. 

5.2. Sixteen cores experiment result
In this subsection, we show the effectiveness of our mapping policy. All the experiments are done using 

our proposed floorplan for sixteen cores’ processor (shown in Figure 4.b). As known before, thread mapping 
in a multicore processor is a NP-complete problem. We exploit our greedy algorithm to map multiple threads 
in the processor. The inputs are the knowledge of the temperatures of the scheduled threads in previous 
running interval. To be able to have enough working stress, we construct one eight threads’ workload, one 
twelve threads’ workload, and one sixteen threads’ workload as shown in Table 2. Temperature comparing is 
conducted between our mapping scheme and some other random generated mappings. The temperatures of 
threads selected to run in a workload in the previous interval is sorted and shown in Table 3. 

Table 3. Temperatures (oC) of threads in previous running interval. 
art:54 crafty:53 galgel:52 mesa:50 
vortex:49 eon:48 perlbmk:47 facerec:46
gap:45 wupwise:44 gzip:41 twolf:40 
fma3d:38 applu:35 swim:28 mcf:25 

(a) Eight threads workload 
Figure 7.a shows the mapping scheme for the eight threads’ workload. It puts the hottest two threads, art

and crafty, at the two corners of the chip, and then calculates the heat dissipating distances for each of the 
other threads. This mapping can potential leave the hot spots in a workload as far as possible. It is worth to 
mention that our scheme can not give the optimal mapping for the workload, but a sub-optimal solution with 
a polynomial complexity is acceptable for us in this work. 

Figure 7.b shows the average (left) and peak (right) temperatures of the workload running with different 
mappings. For sixteen core processor, the different mappings for eight threads’ workload can be up to . It 

is impossible to investigate all the possibilities of mapping. So we randomly generate hundred and ten 
different mappings and compare the temperatures of them with the one of our mapping. In Figure 7.b, the red 
line and the green line show the upper bound and the lower bound of the temperature respectively, and the 
blue line shows the result of our mapping.  

8
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p
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From Figure 7.b, the difference of all the average temperatures is about 1oC, but the difference of the peak 
temperatures can be up to 5oC for different mapping schemes. This shows that there is a big space to improve 
for the peak temperature from the mapping policy. The peak temperature of our mapping scheme is very 
close (1oC) to the lower bound because of the heat spreading model theory and shows the effectiveness of 
our scheme. For the average temperature, our mapping scheme has the same value as the upper bound at first 
but later continuously goes down and close to the lower bound. 

                       
         (a)                                            (b)                                                 (c)                                            (d)                         

Figure 7. Thread mapping of workload and the average and peak temperatures. 
(b) Twelve threads’ workload 
Figure 7.c shows the mapping of our scheme for twelve threads’ workload. Due to four new threads are 

added, the mapping is adjusted according to the new thermal characteristics. And Figure 7.d shows the 
average (left) and peak (right) temperatures of our scheme and other different mappings. Due to time 
limitation, we only generate twenty seven tested mappings in this experiment. 

In Figure 7.d, the peak temperature of our scheme is very close to the lower bound temperature among all 
the tested mappings. And the average temperature of our scheme also goes from the upper bound 
temperature at first to the lower bound temperature at last. The absolute value of the difference between 
upper bound and lower bound is about 3 oC for peak temperature and 0.3 oC for average temperature. Again, 
due to the limited number of tested mappings these differences are not so big in this experiment, but with the 
number of different mappings increases we believe our scheme can show more benefit from other schemes. 

(c) Sixteen threads’ workload 
Figure 8.a shows the mapping of our scheme for sixteen threads’ workload. At this time, the processor has 

a fully utilization and a big thermal challenge if multiple hot threads concurrent running as shown in this 
experiment. We random generate other twenty-three mappings for this workload. The average and peak 
temperatures are shown in Figure 8.b. Similar as in twelve threads experiment, our mapping scheme gets the 
lowest average and peak temperature among all the experiments which shows the effectiveness of our 
algorithm again. 

                         
(a)                                                               (b) 

Figure 8. The mapping (a) of twelve threads’ workload and its average (b.left) and peak (b.right) temperatures. 
In summary, our thermal aware thread mapping policy can effectively find a sub-optimal mapping scheme 

for a multiple threads workload and obtain a good average and peak temperature thus decrease the number of 
triggering DTM techniques and improve the final performance as a result. 

6. Related Work 
In academic research literature, numerable thermal-ware floorplan schemes have been proposed [10, 11] 

but only for traditional superscalar single core processor. The idea of these works is exploiting the thermal 
model to place blocks of a chip thus that the average/peak temperature can be keep low. Little work has been 
done for multicore processor. [12] proposes couple of thermal-ware floorplanning algorithms for a 
heterogeneous MPSoC architecture, whereas in this paper we focus on homogeneous multicore processor. 
[13] gives a rotate based multiprocessor organization which separates the last level cache into banks and 
surround the cache banks around the rotated cores. The objective of the work is to maximize cache hit rate 
but our work in this paper is to minimize processor temperature. 

For thermal-ware task scheduling in multicore processor, there are also many works done by academic 
and industry researchers. [14] combines application power information and core’s temperature information 
into together and make scheduling decision for new coming tasks. It does not take conjoint cores into 
consideration which limits the benefit of their algorithm. [15] considers the temperatures of both the 
scheduled cores and all the neighbor cores surround them and proposes a formula to compute the costs and 
selects the core with the lowest cost as the scheduled one. Unfortunately, the formula depends on five 
experiment detected parameters and these parameters may not suitable for different kind of applications. 
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Some other works [16] mostly focus how to select group of tasks to be concurrently running in a multicore 
processor and not consider how to map the tasks to different cores on the chip 

7. Conclusion
Thermal-aware floorplanning has attracted many attentions from computer architects. Most of existed 

schemes focus on single core floorplanning method and ignore the potential benefit from thermal aware 
floorplanning in cores’ level. In this work, we propose a heat dissipation model based floorplanning method 
for chip multicore processor. We limit our work on cores’ granularity and show that there can be more space 
to leverage the thermal and power problem for a CMP processor through carefully floorplanning the on chip 
cores. Although the experiment results show little improvement of the peak and average temperature, but the 
decreased number of DTM triggers can be used to improve the final performance effectively. In addition, to 
get more benefit from our floorplanning scheme, we propose a thermal-aware thread scheduling algorithm. 
The idea of our algorithm is to keep the potential hot spots in different cores as far as possible thus to 
decrease the average and peak temperature of the whole chip. Although thread mapping is a NP problem, our 
algorithm can find a sub-optimal mapping solution with a polynomial complexity cost. Experiment results 
show that comparing with up to hundred of tested mappings our mapping’s temperature is very close to 
lower bound of the range and it shows the effectiveness of our scheme.   

In the future, we will conduct more experiments to test and verify the temperature benefit of our 
proposed floorplanning through making longer sample period and more different workload combinations. In 
addition, we will do more researches on thread scheduling method on a heterogeneous and homogeneous 
CMP processor and compare our scheme with other existed schemes in the literature. 
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