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Abstract – This paper presents investigations into the effect of spatial correlation on channel estimation 
and capacity of a multiple input multiple output that employ Uniform Circular Array at the receiver end 
(UCA-MIMO) wireless communication system.  Least square (LS), scaled least square (SLS) and minimum 
mean square error (MMSE) methods and relaxed MMSE (RMMSE) are considered for estimating channel 
properties of a MIMO system using training sequences. Performance of MMSE estimation method under 
different spatial correlation conditions is studied. The effect of varying the SNR on the Channel State 
Information (CSI) error and capacity for UCA-MIMO systems is also presented by performing system 
simulation that includes an accurate and realistic channel model. 

1. Introduction 
Most MIMO systems are based on perfect channel knowledge being available at the receiver. However, 

perfect channel knowledge is never known a priori. In practice, the channel has to be estimated to acquire the 
channel state Information (CSI) at the receiver and at the transmitter in some cases. Therefore, accurate and 
efficient channel estimation plays a key role in MIMO communication systems. The MIMO channel 
estimation can be classified into two methods. Firstly, the data aided, pilot based method that is based on 
training symbols with a priori known at the receiver [1]. The second is a non-data aided, blind based, method 
that relies only on the received symbols [2]. In these blind techniques, CSI is attained by exploiting statistical 
information and/or transmitted symbols properties (like finite alphabet, constant modulus, etc.). However, 
compared with training, blind channel estimation generally requires a long data record and higher complexity. 
Therefore, this work focuses on the data aided based channel estimation method performance under different 
channel conditions.  

In [1], a number of training based methods have been studied including the least squares (LS), the scaled 
least  squares (SLS), the linear minimum mean square error (MMSE), and Relaxed minimum mean square 
error (RMMSE). The optimal training sequence designs are introduced for MIMO systems in [3]. In [4], it 
has been demonstrated that the presence of spatial correlation can help to achieve a better quality CSI. Most 
of the previous work was performed for ULA geometry of MIMO array. In [5], the impact of channel spatial 
correlation on the channel estimation error is evaluated when UCA antenna is employed at the receiver side. 
In this paper, LS, SLS, MMSE and RMMSE training-based channel estimation methods are implemented 
and studied by applying an accurate channel model for MIMO system [6]. The performances of channel 
estimators are investigated when applying optimum training sequences and orthogonal sequences. Also, 
channel estimation errors and capacity for UCA-MIMO systems at various AOA and AS values are 
presented. This paper is organized as follows; the spatially correlated MIMO channel model is presented in 
Section 2. In section 3, LS, SLS, LMMSE, and RMMSE channel estimation methods are studied and 
compared under the condition of spatial correlation. Section 4 presents the numerical results. Finally, 
conclusions are derived in section 5. 
 

                              
 

 

68

  2011 International Conference on Communication Engineering and Networks  
IPCSIT vol.19 (2011) © (2011) IACSIT Press, Singapore 



2. Fading Channel Model 
A correlated fading channel is considered for MIMO system with Mt transmit antennas and Mr receive 

antennas [6]. The received signal in the training mode is expressed as  ܇ ൌ ܆۶ ൅ (1) ܄
where Y is the Mt × N complex matrix representing the received signals, X is the Mt × N complex training 
matrix, which includes training pilot sequences; V is the Mr × N complex zero mean white noise matrix; N is 
the length of the transmitted training signal; H is the Mr × Mt  complex channel matrix at one instance of 
time can be modeled as a fixed (constant, LOS) matrix and a Rayleigh (variable, NLOS) matrix. ۶ ൌ ට KଵାK ۶௙ ൅ ට KଵାK ௧ଵ/ଶ  (2)܀௥ଵ/ଶ۶௪܀

  
where ۶௙  represents the fixed LOS channel matrix and  ۶௪  is zero mean and unit variance complex 
Gaussian random variables that presents the coefficients of the variable NLOS matrix, K is the Rician K-
factor. Rr and Rt are the Mr×Mr and Mt×Mt receiver and transmitter spatial correlation matrices respectevly 
and are obtained as in [6] for both ULA-MIMO and UCA-MIMO configurations. 

3. Channel Estimation under Spatial Correlation Conditions 
3.1.  LS Channel Estimator 

Knowing Q and Y, the traditional least squares (LS) estimate for the channel matrix is given in [1] ۶෡LS ൌ ற (3)ۿ܇
where Q†= QH (QHQ)-1 is the Moore-Penrose Pseudo-inverse of Q and [.]H denotes the Hermitian transpose. 
As can be seen, the estimate doesn’t require any knowledge about the channel parameters. The minimum 
MSE of LS estimator is σLS ൌ σ୬ଶM୲ଶM୰ρ୶ (4)

where ρ୶/σ୬ଶ  is the transmitted power to noise ratio (TPNR) in training mode. The optimal performance 
of the LS is influenced by the square of number of antenna elements at the transmitter and by the number of 
antenna elements at the receiver. However, the channel matrix has no effect on the MSE. 

3.2. SLS Channel Estimator 

The SLS channel estimated matrix is  
     ۶෡SLS ൌ γ୭۶෡LS   ൌ ୲୰ሼ܀ಹሽ஢౤మ M౨୲୰ሼሺۿۿHሻషభሽା୲୰ሼ܀ಹሽ  ற                                                                                     (5)ۿ܇

Here, σ୬ଶ  is the noise power; ܀ு is the channel correlation matrix defined as ܀ு=E{HH H} and tr{.} 
implies the trace operation. In practice, ܀ு can be obtained using the channel matrix estimated by the LS 
method, in this case the resulting estimator is referred to the LS-SLS. Accordingly, under the optimal 
training the MSE is  
               σSLS ൌ ሾtrሼ܀ுሽିଵ ൅ ሺσLSሻିଵሿିଵ                                                                                                      (6) trሼ܀ுሽିଵ= ∑ λ୧୬୧ , λi the i-th eignvalue of the channel correlation RH. 
3.3. Mmse Channel Estimator 

The estimated channel matrix of MMSE method is ۶෡MMSE ൌ ۿு܀Hۿ൫܇ ൅ σ୬ଶM୰۷൯ିଵۿH܀ு                                                                                                    (7) 
The MSE of the MMSE can be expressed as σMMSE ൌ trሼሺ܀Hିଵ ൅ H஢౤మۿۿ M౨ሻିଵሽ ൌ trሼሺ઩ିଵ ൅  ෩Hሻିଵሽ                                                                                 (8)ۿ෩ۿ

where ܀ு ൌ H܃઩܃ , U is the unitary eigenvector matrix of RH  and Λ is the diagonal matrix with 
eigenvalues of RH. 

෩ۿ                          ൌ ට஢౤మۿH܃ M౨                                                                                                                               (9) 
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The optimal training matrix of the LMMSE can be derived by using the Lagrange multiplier method that 
yield to optimum training matrix as 

ۿ              ൌ ඥσ୬ଶM୰܃ඥሺµ୭۷ െ ઩ିଵሻା                                                                                                   (10) 
where (x)+ is the max(x,0) and the constant µ୭ ൌ 1/√µ has to be adjusted to satisfy the transmitted power 
constraint 
3.4. RMMSE Channel Estimator 

The MMSE channel estimator (7) assumes the perfect knowledge of the matrix RH. However, in practice 
this assumption is unrealistic. Thus, the LMMSE estimator is relaxed and simplified by replacing RH with 
the matrix δI, where the parameter δ has to be adjusted to minimize the MSE. Hence, (7) can be written as ۶෡۳܁ۻۻ܀ ൌ ܇ ቂۿ۶ۿ ൅ ોܖ૛ܚܜܚۻܜۻሼࡴ܀ሽ ۷ቃି૚  (11)                                                                                                     ۶ۿ
The RMMSE estimation error for an orthogonal training is given by [1]           σRMMSE ൌ ቂtrሼ۶܀ሽିଵ ൅ ቀ ஡౮஢౤మ M౪మM౨ቁቃିଵ                                                                                                  (12) 

4. Numerical Results 
In this section, we study the channel Estimation Error for two systems with ULA-MIMO and UCA-

MIMO receivers. In both systems, the transmitter MIMO antenna is assumed to be ULA with inter-elements 
distance (dt).  ULA-MIMO receive antenna has a uniform inter-elements spacing (dr) and placed vertically 
such that AoA= 0 is broadside case. UCA-MIMO receive antenna has radius (Rr). The numerical studies are 
performed for MIMO systems with channel model simulation as in [6] where WLAN uplink scenario is 
modeled with transmitter at the mobile unite (MU) and receiver at the base station (BS). The channel is 
modeled as multi-clusers scattering environment which means that the signal will arrive at the BS from 
multiple Angles of arrival (AoA) each with angle spread (AS) that is a measure of the angle displacement 
due to the non-LOS propagation. The LS, SLS, MMSE, and RMMSE channel estimators are implemented at 
the receiver. The following parameters are considered, N=Mt, truncated Laplacian Powe Azmiuth Spectrum 
(PAS) distribution, 10000 channel realizations, and the MSE is normalized by Mt × Mr.  Fig. 1 demonstrates 
the normalized MSEs of the LS, SLS, MMSE, and RMMSE channel estimators with orthogonal training 
versus SNR, for 4×4 ULA–UCA MIMO system. As seen, the LS estimator has the worst performance, while 
the MMSE has the best performance among all techniques. Meanwhile, it requires more a prior knowledge 
about the channel than other methods. SLS and RMMSE estimators are identical and they necessitate less 
prior knowledge of the channel than the MMSE estimator. Therefore, the selection of the channel estimator 
requires a tradeoff between the given performance and the available channel knowledge. For the rest of the 
paper, MMSE is considered to study the effect of spatial correlation on estimation error for both ULA and 
UCA geometries. Fig. 2 shows the normalized MSEs of the MMSE estimator versus SNR with both 
orthogonal and optimal training for Mr=4, and Mt =2, 4. It can be observed that the performance of the 
optimal training is better than the orthogonal training especially at low SNRs. It is also noticed that when Mt 
is small and SNR is high the orthogonal training is nearly optimal. Fig. 3 illustrates the normalized MSE 
versus AoA of MMSE channel estimator with AS=20 at various SNR values of 0 dB, 10 dB, and 20 dB for 4 
elements ULA and UCA MIMO antennas utilized at the receiver end. It can be seen that at high SNR the 
MSE is less and the geometry has a no pronounced effect on improving the channel estimation error. The 
presented result reveals that for low SNR the estimation error has more variations in ULA-MIMO geometry 
due to the variable fading correlations values at different AOAs. Also, it can be seen that the performances of 
both geometries are identical near broadside angles {AOA=0o and 180o} where the correlation is minimum. 
ULA outperforms the UCA at endfire angle {AOA=90o} where the correlation has its maximum value. So, 
the minimum channel estimation error can be achieved by employing ULA if the receiver is expecting to 
have the signals arriving at endfire angles.  In Fig. 4 and Fig. 5 present the 3-D graphs showing the 
relationship between the normalized MSE of MMSE channel estimator versus AS and AOA for ULA-MIMO 
and UCA-MIMO receivers respectively. Here the SNR is assumed to be 10 dB. The figures show that as AS 
increases (spatial correlation decreases), the performance of channel estimation gets worse. In addition, for 
higher AS, the MSE value varies when AOA changes. In contrary, for small AS the MSE becomes 
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independent of the value of AOA for both geometries. In Fig. 4 for ULA-MIMO, the best performance at 
endfire angle AoA=90o and at low AS. On the other hand, In Fig. 5 for UCA-MIMO, the minimum MSE can 
be attained with AOA = 45o and 135o due to the fact that, two elements are directly behind and parallel to the 
other two elements (highest correlation), this can be noticed particularly at high AS. From the presented 
results, it can be concluded that the existence of spatial correlation improves channel estimator performance 
for UCA-MIMO as well as it does for ULA-MIMO receivers. Fig. 6 shows the Ergodic capacity of UCA-
MIMO systems with MMSE channel estimator versus SNR at different AS values. At high SNR values, as 
AS decreases and spatial correlation increases, the capacity decreases However, it is noticed that at low SNR 
≤ 6dB, as angle spread decreases (spatial correlation has more effect) channel capacity increases for MMSE-
UCA-MIMO systems. This disobeys the conventional knowledge that spatial correlation reduces the channel 
capacity.  

5. Conclusion 
The data-aided (training or pilot based) channel estimation method has been studied. The LS, SLS, 

LMMSE, and RMMSE channel estimators have been demonstrated. Orthogonal and optimal training 
symbols performances are presented for MMSE. The results have been confirmed that MMSE method offers 
best performance over the other methods. This is for the reason that of utilizing the channel correlation that 
reduces the channel estimation error in the previous- methods, while the LS method does not consider the 
channel properties. However, it requires more a prior knowledge about the channel than the other methods. 
The SLS and RMMSE necessitate less prior knowledge about the channel than the MMSE estimator. In this 
paper, the impact of channel spatial correlation on the accuracy of MIMO channel estimation error has been 
investigated. The undertaken analysis has revealed that the strongly correlated channel can improve the 
channel estimation at low SNR for the considered UCA-MIMO systems. However, at high SNR the channel 
spatial correlation has less effect pronounced on the accuracy of the channel estimation. In addition the 
results demonstrate that the performance of the channel estimator in ULA-MIMO system has variation when 
having spatial correlations by varying AOA or AS. However, even with this variation the MSE of MMSE 
channel estimator for ULA-MIMO systems has in general less values than that for UCA-MIMO.    
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Fig. 1 Channel estimation MSE versus SNR for LS, SLS, MMSE and RMMSE estimators using orthogonal training 

sequences. 

 
Fig. 2 Channel estimation MSE versus SNR for MMSE using orthogonal and optimal training sequences for different 

number of elements at MIMO transmitter arrays 

 
Fig. 3 Channel estimation MSE versus AOA for ULA-ULA MIMO and ULA-UCA MIMO systems employed at the 

receiver end with various SNR values. 
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Fig. 4 Normalized MSE of MMSE channel estimator versus AOA and AS at SNR =10dB, in case of ULA- MIMO 

receiver. 

 
Fig. 5 Normalized MSE of MMSE channel estimator versus AOA and AS at SNR =10dB, in case of ULA-UCA MIMO 

system. 

 
 

 Fig. 6 Ergodic Capacity for UCA- MIMO systems with MMSE channel estimator versus SNR at different AS. 

0
50

100
150

0

5

10

15

20
0.08

0.1

0.12

0.14

0.16

0.18

0.2

 

AOA (Degree)
AS (Degree) 

N
or

m
al

iz
ed

 M
SE

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0
50

100
150

200

0
5

10
15

20
0.08

0.1

0.12

0.14

0.16

0.18

0.2

 

AOA (Degree)AS (Degree)
 

N
or

m
al

iz
ed

 M
SE

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

SNR (dB)

C
ap

ac
ity

 (b
/s

/H
z)

 

 
AS=1o

AS=5o

AS=10o

AS=15o

AS=20o

73


