
A Cloud Portal with a Cloud Service Search Engine

Jaeyong Kang and Kwang Mong Sim

Multiagent and Cloud Computing Systems Lab., Department of Information and Communication, Gwangju
Institute of Science and Technology (GIST), Gwangju, Korea

e-mail: kjysmu@gist.ac.kr, e-mail: prof_sim_2002@yahoo.com

Abstract. Cloud computing has become another buzzword after Web 2.0. Many companies, such as
Amazon, Google, Microsoft and so on, accelerate their paces in developing Cloud computing systems.
However, there is no study that focuses on search engine and web portal for Cloud computing system. Hence,
this paper presents Cloud portal with various service categories and Cloud service search engine for Cloud
computing system. In Cloud service search engine, we use Cloud ontology to semantically define the
relationship among Cloud services. It contains a set of Cloud concepts, individuals of those concepts, and the
relationship among those individuals. It is used for determining the similarity among Cloud services with
three kinds of reasoning methods (1) concept similarity reasoning, (2) object property similarity reasoning,
and (3) datatype property similarity reasoning. The interface and features of the Cloud portal are briefly
presented. Finally a proof-of-concept-example demonstrates the features and functionalities of our Cloud
portal and Cloud search engine.

Keywords: Cloud Computing; Cloud Portal; Search Engines; Cloud Ontology

1. Introduction
With the emergence of cloud computing, any organization that requires information technology (IT)

infrastructure has experienced a significant paradigm shift. Instead of paying and maintaining expensive IT
software and hardware, it is now possible to rent required infrastructures at cheap rates. Cloud computing is
the collection of virtualization, Web services [1],[2], Service Level Agreements and highly scalable compute
servers. The end result is distributed systems that offer over the Internet resources as scalable, pay-per-use
services. Although the variety of services and resources are offered in Clouds, there is no portal site and
search mechanism that are specialized for Cloud computing. In this paper, we present the Cloud portal with a
Cloud service search engine as a main feature and various other features. In our Cloud service search engine,
users can specify the type of Cloud services. Furthermore, users can specify three kinds of requirements: 1)
functional requirement (category of service), 2) technical requirement (OS, CPU clock, memory, disk
capacity and etc.) and 3) cost requirement (maximum acceptable price and timeslot range) as input
parameters. Once users send those input parameters to the Cloud service search engine, it returns the list of
Cloud services ordered by aggregated similarity (service utility), which is determined by three kinds of
similarity reasoning methods by consulting a Cloud ontology. The Cloud ontology provides meta
information which describes data semantics. It contains a set of Cloud concepts and their individuals as well
as the relationships between individuals. It is used for determining the similarity among Cloud services using
three kinds of similarity reasoning methods: (1) concept similarity reasoning, (2) object property similarity
reasoning, and (3) datatype property similarity reasoning. With these three kinds of similarity reasoning
methods, we demonstrated that in our previous works [7], [8], [9], and [10] that our Cloud service search
engine can provide an efficient search mechanism to discover appropriate Cloud services.

 2011 International Conference on Information and Intelligent Computing
IPCSIT vol.18 (2011) © (2011) IACSIT Press, Singapore

1

This paper is organized as follows. In Section 2, the Cloud ontology and the three kinds of similarity
reasoning methods are described. Section 3 presents a Cloud portal and the proof-of-the-concept example of
Cloud service search engine, and finally, conclusion and future work are illustrated in Section 4.

2. Similarity Reasoning with Cloud Ontology

2.1. Cloud ontology
Ontology provides a formal, shared specification of concepts, their relationships, and other realities of

some domain, which can reduce or eliminate confusion of terminologies, enable computers to process domain
knowledge more precisely and conveniently. Since 1990s, ontology has developed from AI field to computer
field, and becomes a popular research topic in various communities such as knowledge engineering, natural
language processing, intelligent information integration and knowledge management, etc. The existing famous
ontologies are CYC [3], KIF [4] and Ontolingua [5]. In a Cloud ontology, the hierarchical relations of Cloud
concepts are shown. For instance, the concept “CloudSystem” has five different children nodes (IaaS, PaaS,
SaaS, CaaS, and DaaS). By consulting a Cloud ontology, similarity reasoning, which are explained in next
sub-section, is carried out.

2.2. Similarity reasoning
The similarity between the request from users and the advertisements from providers can be determined

by 1) concept similarity reasoning, 2) object property similarity reasoning, and 3) datatype property similarity
reasoning, as follows:

(,) (,) (,) (1) (,)con obj dataSim p q Sim p q Sim p q Sim p qα β α β= + + − − (1)

where α , β , and (1)α β− − are the weights of each clause, and the range of the evaluated value is
0 (,) 1Sim p q≤ ≤ .

1) Concept similarity reasoning: The concept similarity can be determined as follows [6]:

con
| (P) (Q)|(,)

| (P)|
Super SuperSim p q

Super
∩= (2)

where P and Q are the most specific concepts that individuals p and q belong to, respectively, and (P)Super
(respectively, ()Super Q) is a set of all reachable super-concepts from concept P (respectively, concept Q).

2) Object property similarity reasoning: The object property similarity can be determined as follows:

(,)

obj

(,)
() = ,

| ()|
{(,) | (, ,) (), (, ,) ()}

x y U
Sim x y

Sim p,q
O p

U x y p r x O p q r y O q

∈

= ∈ ∈

∑

(3)

where ()O p is a set of triples that contain the object properties of the individual p, and p is the subject. Each
triple consists of (1) the subject, (2) a predicate, and (3) an object value to express the ontology. For instance,
if we want to express the individual ‘Provider1’, which has the property ‘hasOS’, and its value ‘Devian’, we
can simply express using a triple as ‘(Provider1, hasOS, Devian)’. U is the set of object values that has the
common predicate r of individuals p and q in each triple ()O p and ()O q respectively. For instance, the
common predicates, which have an object value of Provider1 and Provider2 in Table 2 are hasCPU and
hasOS. Hence, the set of object values of the common properties of individuals p and q is U = {(CPU1,
CPU2), (Devian, WindowsVista)}.

3) Datatype property similarity reasoning: The datatype property similarity can be determined as
follows:

2

(, ,)
data

distance

distance ()

(, ,)
(,) ,

| () |
{(, ,) | (, ,) (), (, ,) ()},

| |(, ,) 1 ,
(,)

(,) max (| |),

() { | (, ,) Ontology}

x y r V

i I r

Comp x y r
Sim p q

D p
V x y r p r x D p q r y D q

x yComp x y r
MAX x r

MAX x r x i
I r i s r i

∈

∈

=

= ∈ ∈
−= −

= −

= ∈

∑

(4)

where ()D p is a set of triples that contains the datatype properties of the individual p and p is the subject.
Each triple consists of (1) the subject, (2) a predicate, and (3) a datatype value to express the ontology. For
instance, if we want to express the individual ‘Provider2’, which has the property ‘hasNetworkLatency’, and
its value ‘200’, we can simply express using a triple as ‘(Provider2, hasNetworkLatency, 200)’. V is a set of
datatype values that has the common predicate r of individuals p and q in each triple ()D p and ()D q ,
respectively. For instance, the common predicates that have a datatype value between Provider1 and
Provider2 in Table 2 are hasMemory, hasCache, and hasStorage. Hence, the set of datatype values of the
common properties of individuals p and q is V = {(5000, 12000, hasMemory), (8, 8, hasCache), (25000,
30000, hasStorage)}. With each of the elements in V, Comp(x,y,r), which is the similarity between datatype
values x and y over predicate r is determined. For instance, the example used to calculate Comp(5000, 12000,
hasMemory) is shown in Fig. 4.

Figure 1. Example to calculate Comp(5000,12000,hasMemory)

The predicate r is hasMemory with the range of 200 to 30000. Based on the value x, the maximum
reachable distance with the range of 2000 to 30000 is decided. With the maximum reachable distance and the
distance between x and y, the similarity between datatype values 5000 and 12000 over the predicate
hasMemory, Comp(5000, 12000, hasMemory), can be determined.

With the above three kinds of similarity reasoning methods, we can determine the similarity between two
individuals. For instance, let Provider1 and Provider2 be individuals in the concepts PaaS and CaaS,
respectively, in a Cloud ontology representing providers. Also, we assume that Provider1 and Provider2 have
some properties. Table 1 shows the concepts and their individuals, and Table 2 shows those individuals and
their properties.

TABLE I. EXAMPLE OF CONCEPTS AND THEIR INDIVIDUALS

Concept Individual

InfrastructureAsAService (PaaS) Provider1

CommunicationAsAService (CaaS) Provider2

IntelCPU CPU1

AMDCPU CPU2

RelationalDBMS Oracle

WindowsSeries WindowsVista

LinuxSeries Devian

TABLE II. EXAMPLE OF INDIVIDUALS AND THEIR TYPE AND VALUE

Individual Property Name (Type) Value

Provider1 hasCPU (Object) CPU1

Provider1 hasOS (Object) Devian

3

Provider1 hasDBMS (Object) Oracle

Provider1 hasMemory (Datatype) 5000

Provider1 hasCache (Datatype) 8

Provider1 hasStorage (Datatype) 25000

CPU1 hasSpeed (Datatype) 2.8

Provider2 hasCPU (Object) CPU2

Provider2 hasOS (Object) WindowsVista

Provider2 hasMemory (Datatype) 12000

Provider2 hasCache (Datatype) 8

Provider2 hasStorage (Datatype) 30000

Provider2 hasNetworkBandwidth (Datatype) 500

Provider2 hasNetworkLatency (Datatype) 200

CPU2 hasSpeed (Datatype) 3.4

To calculate

con ()Sim Provider1,Provider2 , we know that | () | 3Super PaaS = and | () () | 2Super PaaS Super CaaS∩ =
(see Fig. 2). Hence, the concept similarity is

con () = 2/3Sim Provider1,Provider2 .

Figure 2. Relation in terms of Cloud

To calculate
obj ()Sim Provider1,Provider2 , we know that | () | 3O Provider1 = , and the set of the values of

common object properties of Provider1 and Provider2 is U = {(CPU1, CPU2), (Devian, WindowsVista)}. The
similarity of each of the members in U can be calculated by a recursive procedure. Using the three kinds of
similarity reasoning methods that have been previously explained and will be explained, we can give the
similarity values of each member of U, which are Sim(CPU1, CPU2) = 0.64, Sim(Devian, WindowsVista) =
0.82. Hence, the calculated object similarity is as follows:

obj

0.64 0.82() 0.49
3

Sim Provider1,Provider2 += = 

For the datatype property similarity, we know that | () | 3D Provider1 = and the set of the values of common
datatype property between two individuals, which is V = {(5000, 12000, hasMemory), (8, 8, hasCache),
(25000, 30000, hasStorage)}. We have to calculate numerical similarity for all the members of the set V. The
numerical similarity for the first member of the set V is as follows:

| 5000 12000 |(5 12) 1 0.72
max(| 5000 2000 |,| 5000 30000 |)

Comp 000, 000,hasMemory −= − =
− −

 

with a memory range from 2000 to 30000. The numerical similarity for the other members can be calculated
in the same way, which are Comp(8, 8, hasCache) = 0.96, Comp(25000, 30000, hasStorage) = 0.94. Hence,
the datatype property similarity can be calculated as follows:

data
0.72 0.96 0.94(,) 0.87

3
Sim a b + += = 

We assume that α and β are 1/3 each, the same weight. Finally, the similarity between two individuals,
Provider1 and Provider2, can be calculated as follows:

4

1 1 1() 0.67 0.49 0.87 0.68
3 3 3

Sim Provider1,Provider2 = + + = 

3. Proof-Of-Concepts Example with Cloud Portal
The main page of Cloud portal is shown in Fig 3. The features of Cloud portal are as follows.

Figure 3. The main page of Cloudle portal.

The main page of Cloud portal contains the latest news about Cloud computing and the latest updates of
Cloud portal as well as each menu of four kinds of services: 1) Cloud search, 2) News & Articles, 3) Books,
and 4) Events. In Cloud search, an example will be provided to illustrate the major functionalities of the Cloud
service search engine in Cloud portal.

4) Cloud search
In the Cloud search page, users can search the Cloud services based on their service requirements. At first,

a user must select the type of the Cloud service to narrow the search range to find appropriate Cloud services.
Keywords, when needed, can be added as many as a user wants to sort out the services. When user knows the
name of the service to be searched, a service name can be assigned to limit it for only the services with the
assigned name. In the technical requirements field, the user can specify information such as OS, CPU name,
CPU clock, RAM, and HDD. In the cost and time requirements field, user can assign the maximum price that
is acceptable for the service, and the timeslot that the service should be available. When a user sends a query
to the Cloud search engine, it returns the list of information of Cloud services ordered by similarity in an
increasing order. A user can select one of the Cloud services from a list of services. Finally, the user can pay
and get the Cloud service. An example to find Cloud services is described as follows.

Step 0: The screen in Fig. 4 shows the service registration query of a Cloud provider. A Cloud provider
can specify the information of Service name, Web address, Keywords, Technical Information (e.g., OS, CPU
name, etc.), and Cost and Time Information (e.g., Min Price, several timeslots). By specifying these
parameters, Cloud providers can register their services into the database of our Cloud service search engine.

5

Figure 4. The service registration page

Step 1: The screen in Fig. 5 shows the input query of a user which contains a service type (e.g.,
“Infrastructure as a service (IaaS)”), technical requirements (e.g., OS = “Windows7”, CPU name = “Phenom
II X6”, CPU clock = “3.0”, RAM = “3.0”, HDD = “4.0”), and cost and time requirements (e.g., Max price =
“3000”, Start time = “200”, End time = “600”, Price weight = “0.5”, Time weight = “0.5”).

Figure 5. Cloud service search engine

Step 2: Once user sends the input query to our system, by referring to the value of service type (e.g.,
service type = “IaaS”), the list of registered services in the database is filtered out as shown in Fig 6. With the
technical requirements input parameters, the similarity of each filtered service can be determined using (1)
similarity reasoning, (2) object property similarity reasoning, and (3) datatype property similarity reasoning by

6

consulting the Cloud ontology. With the Cost and Time requirement, the price and timeslot utility can be
determined.

Figure 6. The list of services after filtering by service type

Step 3: After the similarity of each service is determined and rated, the list of Cloud services is displayed
to the user as shown in Fig 7. From the result, we can see that the number of retrieved Cloud service is 82, and
the Cloud service “Amazon EC2” has the highest similarity (e.g., similarity = 0.9858) among all other Cloud
services. (see comparison table III).

Figure 7. The list of searched Cloud services.

TABLE III. COMPARISON USER QUERY WITH SEARCH RESULT

Information User query Search result

Service type IaaS IaaS

OS Windows7 Windows7

CPU name Phenom II 6 Phenom II 6

CPU clock 3.0 2.5

RAM 3.0 16.0

HDD 4.0 3.5

5) News & Articles

In the News & Articles page, users can see the list of news and articles related to the Cloud computing. It
contains the title of news and several beginning sentences.

6) Books
In the Books menu, the list of books that is relevant to Cloud computing is shown. It contains the

information of title, authors, and price of the books.
7) Events

7

In the Event menu, the list of conferences and events are shown. It contains the information of the name,
date, submission deadline, venue and country of the conference.

4. Conclusion and Future Works
This paper presented a Cloud portal that contains a Cloud service search engine. While the previous work

on Cloud service search engine which is called “Cloudle” was presented in [7],[8], and [9], and [10] compared
the performance of Cloudle with two Cloud ontologies, the Cloud service search engine in this paper is
introduced as the one of features in Cloud portal. The contributions of this work is to build the Cloud portal
that provides (1) Cloud service search engine with three kinds of reasoning methods, (2) latest news and
articles regarding Cloud computing, (3) Books about Cloud computing, and (4) Events such as upcoming
Cloud computing conferences and workshops. From the proof-of-the-concept example, we demonstrate that
Cloud service search engine can potentially assist users in finding Cloud services that are closely matched
with users’ requirements. To the best of the authors’ knowledge, this work is the first attempt in building a
Cloud portal with a Cloud service search engine and other various features. At present, there are few Cloud
service providers and there may not be many Cloud services available. However, when Cloud computing is
more widely used in the near future, our Cloud portal can be helpful tool for Cloud users for finding Cloud
services under their specific preference and utilizing other various features.

5. Acknowledgment
This work was supported by the Korea Research Foundation Grant funded by the Korean Government

(MEST) (KRF-2009-220-D00092) and the DASAN International Faculty Fund (project code: 140316).

6. References
[1] D. Booth, et al. Web Services Architecture. Accessed 18 Feburary 2009, http://www.w3.org/TR/ws-arch/.

[2] F. Curbera et. al. Unraveling the Web Services Web: An Introduction to SOAP, WSDL, and UDDI. IEEE Internet
Computing, V. 6, I. 2, 2002.

[3] Douglas B. Lenat and R. Guha: Building large knowledge-based systems. Representation and inference in the Cyc
project, Addison-Wesley, Reading, Massachusetts, 1990.

[4] M. R. Genesereth: Knowledge Interchange Format. In Proceedings of the Second International Conference on the
Principles of Knowledge Representation and Reasoning (KR- 91), J. Allenet al., (eds), Morgan Kaufman
Publishers, 1991, pp 238-249.

[5] Thomas R. Gruber: A Translation Approach to Portable Ontology Specifications, Knowledge Acquisition, 5:199-
220, 1993.

[6] Troels Andreasen, Henrik Bulskov, and Rasmus Kanppe, “From Ontology over Similarity to Query Evaluation”,
2nd International Conference on Ontologies, Databases, and Applications of Semantics for Large Scale
Information Systems (ODBASE), 3-7 November 2003, Catania, Sicily, Italy, 2003.

[7] Jaeyong Kang and Kwang Mong Sim, “Cloudle: An Agent-based Cloud Search Engine that Consults a Cloud
Ontology,” Cloud Computing and Virtualization Conference (CCV 2010), 2010.

[8] Jaeyong Kang and Kwang Mong Sim, “Cloudle: A Multi-criteria Cloud Service Search Engine,” IEEE Asia-
Pacific Service Computing Conference (APSCC 2010), 2010

[9] Jaeyong Kang and Kwang Mong Sim, “Cloudle: An Ontology-enhanced Cloud Service Search Engine,” The 1st
International Workshop on Cloud Information System Engineering (CISE 2010), 2010

[10] Jaeyong Kang and Kwang Mong Sim, “Ontology and Search Engine for Cloud Computing System,” International
Conference on System Science and Engineering (ICSSE 2011), 2011

8

