
On Integrating User Acceptance Tests Generation to Requirements
Management

Chavalid Ieamsaard 1 and Yachai Limpiyakorn 2 +
1, 2 Department of Computer Engineering, Chulalongkorn University, Bangkok 10330, Thailand

1 Chavalid.cpe@gmail.com, 2 Yachai.L@chula.ac.th

Abstract. Once the phase of requirements analysis has finished, user acceptance tests can be derived from
the user requirements. Since testing is resource consuming and it is inevitable for requirements changes in a
software project, this paper presents an automation approach to generating user acceptance tests from use
case descriptions. Additionally, the relationships between use cases and their test cases are exported to
traceability matrix automatically. The efforts of this research contribute to the improvement of software
development process. That is, it could reduce the cost of testing and provide the ability to better manage
requirements changes.

Keywords: Use Case, User Acceptance Tests, Requirements Management, Software Process Improvement.

1. Introduction
The V model or the extended model of the waterfall model serves as a guide for the integration of quality

control activities (i.e. reviews and testing) throughout the software development life cycle. The horizontal
and vertical axes represent time or project completeness (left-to-right) and level of abstraction (coarsest-grain
abstraction uppermost), respectively.

During the first phase of software development life cycle called Requirements Analysis, the needs of the
users are elicited and transformed to the requirements of the proposed system. This phase is concerned with
establishing what the ideal system has to perform. However it does not determine how the software will be
designed or built.

Prior to the release of the product to the customer, user acceptance test or UAT will be performed. UAT
is the phase of testing used to determine whether a system satisfies the requirements specified in the
requirements analysis phase. The acceptance test design is derived from the requirements document which
typically describes the system’s functional, interface, performance, data, security, etc. In general, the
requirements document is used by business analysts to communicate their understanding of the system to the
users and the user acceptance tests are designed in this requirements analysis phase. The user acceptance
tests aim at verifying and validating the implemented system in the real world by the intended audience
according to the original needs.

In addition to the fact that testing is a resource consumption activity, requirements changes aggravate the
cost of testing. It is inevitable for requirements changes in a software project. Automating test case
generation could lessen the cost of testing as well as reduce the flaws in test cases due to human errors. This
research therefore presents an approach to generating test cases from requirements document, and serving as
black-box tests used in user acceptance test.

2. Background

+ Corresponding author. Tel.: (+66) 2-218-6968; fax: (+66) 2-218-6955.
 E-mail address: Yachai.L@chula.ac.th.

 2011 International Conference on Information Communication and Management
IPCSIT vol.16 (2011) © (2011) IACSIT Press, Singapore

248

2.1. Use case [1]
Unified Modeling Language provides a comprehensive notation for communicating the requirements,

architecture, implementation, deployment, and states of a system. UML standardizes several Diagramming
methods for embracing object-oriented analysis and design. The UML 9 diagrams can be categorized into
Structural diagrams and Behavioral diagrams. Use Case diagram, which is a type of behavioral diagrams, is
used as a source for deriving the test cases for user acceptance testing in this research work.

In UML, use case diagrams model the behavior of a system and help to capture the requirements of the
system. The purpose of use case diagrams is to present a graphical overview of the functionality provided by
a system in terms of actors, their goals represented as use cases, and any relationships between those use
cases. Four relationships among use cases are used often in practice, namely include, extend, generalization,
and associations.

Use cases treat the system as a black box. One or more system requirements describe the functionality
needed to meet a user need or user requirement. Each system requirement can be analyzed into one or more
use cases. Each use case should be traceable to its originating system requirement, which in turn should be
traceable to its originating user need.

Each use case describes a particular goal for the user and how the user interacts with the system to
achieve that goal. Some development processes require detailed use cases to define requirements.
Accompanied with a use case, use case description is the documentation that details the behavior of objects
and flow of events in a use case. Example of use case description is shown in Table 1.

Table1 Example of Use Case Description

Fig. 1: Flow of Events in Use Case.

Flow of events [2] can be divided into three types: 1) Basic flow, 2) Alternate flow, and 3) Exception
flow as illustrated in Fig.1. Basic flow depicts a perfect situation where nothing goes wrong. Alternate flow
is a pathway that is not the most heavily travelled one. Exception flow is a path for an error condition.

One of the purposes of use cases is to provide a basis for testing to ensure that the system works as
intended. It is thus possible to automatically generate black-box tests from use cases.

2.2. Extended finite state machine [3]
Finite State Machine (FSM) and Extended Finite State Machine (EFSM) are commonly used in Model

Based Testing. An EFSM is the enhanced model based on the traditional finite state machine or finite-state
automation. It is defined by the tuple M= {Q, I, O, D, T}, where Q is a set of control states, I is a set of
inputs, O is a set of outputs, D is a n Dimensional space D1 × . . . × Dn, T is a transition relation, T: Q × D ×
I → Q × D × O. An EFSM can be represented by the control flow graph which illustrates the transformation
of events from state to state. Therefore, Extended Finite State Machines are useful and help the derivation of
test paths or test scenarios from use case descriptions in this work.

3. Research Methodology
Once the requirements analysis phase has been committed, the user acceptance tests can be derived from

the requirements document. This research presents an automation approach to generate test cases for UAT
from Use Case Descriptions. It is assumed that Use Case Descriptions (UCD), Functional Requirements (FR),
and Non-functional Requirements (NFR) are well-defined in the Software Requirements Specification (SRS)

249

as the input document to the system. Example of the Use Case Description used in this work is depicted in
Fig. 2. The input text file, SRS, will be transformed into XML format and the details inside each UCD
associated with the list of FR and NFR will be extracted by the component implemented in the research work
[4], which is part of our Requirements Management system. Fig.3 illustrates the overview of the process
including the following steps:

Fig. 2: Example of Use Case Description.

Fig. 3: Overview of the System.

3.1. Generate test scenarios
Extended Finite State Machine (EFSM) presented in [3] is applied to generate the test path graph as

illustrated in Fig. 4. The use case “UC02” contains four test paths as listed in the right-hand-side table of Fig.
4. Each test path represents each test scenario or each flow of event residing a Use Case Description. Each
UCD contains a set of test scenarios, and in turn one or several UCDs may fulfill a Functional Requirement/

250

Non-Functional Requirement. The information of the associations between UCDs and a FR/ NFR, as well as
those between a UCD and its test scenarios are stored in the repository.

Fig. 4: Example Set of Test Paths or Test Scenarios Derived from UCD—“UC02”.

3.2. Generate test cases
Each test scenario represents a test case (TC). The details of a test case will be automatically fulfilled in

this step, i.e. Pre-condition, Test Scenario, and Expected Result. According to Fig. 4, four test cases
associated with “UC02- Register” will be generated. That is, TC No.1 represents the normal scenario of
successful student registration. TC No.2 represents the first alternate scenario when students miss the course
ID they would like to register. They need to check for the valid course ID (“UC03”), then back to the normal
path again. TC No.3 represents the second alternate scenario when the number of students registering a
certain course over limit. The system will notify the situation and back to normal path. TC No.4 represents
the third alternate scenario which is the combination of the first and second alternate scenarios before back to
the normal path.

3.3. Review test cases
This step is performed by a reviewer or test team to verify the correctness and completeness of test cases

generated from the previous step. Example of a set of test cases associated with a Use Case—“UC02” is
illustrated in Fig. 5.

3.4. Export data to traceability matrix
The relationships between use cases and functional requirements/ non-functional requirements, as well as

the associations between uses cases and their test cases are exported to the component implemented in the
research work, which will extract the details and input them into the traceability matrix implemented in the
research work [5].

251

Fig. 5: Example Completed Test Cases of UCD—“UC02”.

4. Conclusion
This paper presents a method and a system implemented to generate user acceptance tests from use case

descriptions once the requirements analysis phase has been committed. It is assumed that the well-defined
use case descriptions are contained in the Software Requirements Specification as the input text file to the
system. The Software Requirements Specification will be converted to XML format so that the details of use
case descriptions can be extracted to generate the test paths from the flow of events inside each use case
description. Each test path represents a test case which will be fulfilled and reviewed the details. Finally, the
relationships between use cases and their test cases will be exported to the traceability matrix to serve the
requirements management purpose. The benefits of this research are to reduce the cost of testing and to
improve the performance of software process.

5. References
[1] Object Management group. (2010). Unified Modeling Language: Superstructure version 2.3 [Online]. Available:

http://www.omg.org

[2] H. Jim. (2001). Generating Test Cases from Use Cases [Online], IBM Journal, Available:
htttp://www.ibm.com/developerworks/rational/library/content/RationalEdge/jun01/GeneratingTestCasesFromUse
CasesJune01.pdf

[3] A. Sinha, A. Paradkar, and C. Williams, On Generating EFSM Models from Use Cases, Proceedings of the Sixth
International Workshop on Scenarios and State Machines (SCESM'07: ICSE Workshops 2007), Minneapolis, MN,
USA, May 20-26, 2007, pp.1-1.

[4] Y. Phopan, and Y. Limpiyakorn, Approach to Automating Input Data for Requirements Traceability Matrix,
Proceedings of the National Graduate Research Conference 2011, Buriram, Thailand, Aug 11, 2011, pp. 1033-
1042.

[5] S. Soonsongtanee, and Y. Limpiyakorn, Enhancement of Requirements Traceability with State Diagrams,
Proceedings of IEEE International Conference on Computer Engineering and Technology, Chengdu, China, Apr
16-18, 2010, pp. 248-252.

252

