
A Petri Net Model for High Availability in Virtualized Local Disaster
Recovery

Aye Myat Myat Paing and Ni Lar Thein

University of Computer Studies, Yangon

Abstract. Effective business continuity strategies need to have both high availability (HA) and disaster
recovery (DR). Traditional high availability and disaster recovery solutions require a great deal of duplicate
hardware and software. Virtualization affords significant cost and performance advantages over more
traditional disaster recovery options. In this paper, the virtualized local disaster recovery is proposed in order
to provide a higher level of availability for business continuity. Effective way to use the resources at both
primary site and disaster recovery site, active-active clustering architecture is employed in this virtualized
local DR. The software failure due to software aging problem which can decrease the availability of the
system is considered. The software rejuvenation methodology and virtualization technology is combined to
counteract the software aging problem. To get higher level of availability in local disaster recovery,
virtualization, clustering and software rejuvenation technology are integrated. A stochastic Petri net model is
constructed to describe the behavior of virtualized local DR. To analyze the availability of the proposed
model, numerical derivation is presented. The numerical derivation results are validated with the evaluation
through SHARPE simulation tool.

Keywords: availability, clustering, local disaster recovery, stochastic Petri nets, virtualization.

1. Introduction
Organizations today face a tough challenge in choosing an appropriate high availability solution in order

to minimize the amount of downtime that meets their business requirements. As a result, disaster recovery
has gained great importance in IT. There are two broad categories such as natural or man-made disaster
which can cause site failures. The disaster recovery is designed to ensure the continuation of vital business
processes in the event that the disaster occurs [1].

Availability has long been a critical issue for online computer systems whose failure can halt business
processes [2]. The need for high availability (HA) and disaster recovery (DR) in IT environment is more
importance than other sectors of enterprises. Traditional high availability and disaster recovery solutions
require a great deal of duplicate hardware and software.

Virtualization technology is changing the face of disaster recovery. Virtual machine technologies require
availability solutions that provide protection against data loss and downtime for the entire environment.

A cluster is a collection of computer nodes: independent, self-contained computer systems working
together – to provide a more reliable and powerful system than a single node alone. Therefore, clustering is a
key server function in HA and DR environment. Active-active clustering is a high availability (synchronous)
DR solution. The architecture is maximizing the performance of the applications, and providing more cost-
effective use of the resources. The benefit of shared storage is that the nodes simultaneous own the shared
resources [3].

Disaster and its recovery processes involve unplanned interruption of service. Unplanned downtime is
mainly caused by computer failure, network failure, software failure and local or regional disaster. As
business becomes increasingly dependent on information and computing technology, continuous availability
is a universal concern. Failures of computer systems are more often due to software faults than due to

 2011 International Conference on Information Communication and Management
IPCSIT vol.16 (2011) © (2011) IACSIT Press, Singapore

158

hardware faults. The state of software degrades with time is known as software aging. The most effective
way to handle software failure due to software aging is software rejuvenation. Software rejuvenation is a
proactive fault management technique aimed at cleaning up the system internal state to prevent the
occurrence of more severe crash failures in the future [4], [5].

In this paper, we combine clustering technology, virtualization technology and software rejuvenation
mechanism in order to improve the DR performance. Analytical models are mathematical models which are
an abstraction from the real world system and relate only to the behavior and characteristics of interest. We
construct a Petri net model for virtualized local DR and evaluate through both analytical and SHARPE tool
simulation.

2. Proposed Virtualized Local Disaster Recovery
Local disaster recovery is that the surviving node can support the service for a failed node in the event of

localized disaster such as fire or building power outages.
The proposed virtualized local DR is based on active-active high-availability and DR solution working

with virtual servers and shown in Figure 1. Clustering supports two or more servers running duplicate VMs.
Failover technologies also allow a failed VM to load from a storage snapshot and start up on another server.
Each service under high availability DR solution needs at least two sites: primary site and disaster recovery
site. The active physical server at primary site as well as DR site contains two or more VMs. At primary site,
VMs are created as active VMs and standby VMs. At the same time, VMs are created as active VMs and
standby VMs. The active-standby roles are switched due to failure detection. In this way, hardware exposure
is mitigated through physical hardware redundancy.

Clustering provides high availability by protecting against a node failure. However, it does not prevent
against storage failures. Therefore we employ shared storage for this virtualized clustering architecture. Both
sites are designed to operate concurrently under normal conditions and to serve as a DR site for each other,
should a complete site failure occur at either one. A heartbeat keep- alive message is used to monitor the
health of the nodes between primary site and DR site.

In this virtualized local disaster recovery, when such a disaster occurs, the virtual machines are
transferred and reloaded on the servers at the alternate site. We also consider the software failure due to
software aging problem which can decrease the availability of the system. In virtualized environments, the
hypervisor itself or virtual machines can fail with software failure. The software rejuvenation methodology
and virtualization technology is employed to counteract the software aging problem in the proposed local DR.
The active VMs at primary site as well as DR site provide different services. When one of the active VMs at
primary site needs to do rejuvenation, the services are migrated to one of the standby VMs at DR site. VMs
can be failed over through migration or restarted from storage onto active server at DR site but the migration
downtime is nearly zero and we can neglect the duration of migration. As a result, virtualization technology
can provide continued services even if VMs need to perform rejuvenation.

Shared storage

Heartbeat

DR sitePrimary site

Active
VM

Active
VM

Active
VM

Active
VM

Standby
VM

Standby
VM

Standby
VM

Standby
VM

Fig.1: Active-Active Virtualized Clustering Architecture

3. Proposed Petri Net Model for Virtualized Local DR
Petri Nets (PN) are a graphical tool for the formal description of the flow of activities in complex

systems. Petri nets are extended by associating time with the firing of transitions, resulting in Timed Petri

159

nets. A special case of Timed Petri nets is Stochastic Petri nets (SPN) where the firing times are considered
to be random variables.

The proposed stochastic Petri net model of virtualized local DR is shown in Figure 2. Each physical
server includes the following the failure and recovery transitions. The circles represent places with dots
inside representing the tokens held inside that place. The robust and healthy state is modeled by the place Ph.
It has n tokens which represented n virtual machines in active physical server. Transition Tprobf models the
aging of the software. When this transition fires,(i.e., a token reaches place Pprobf) the VM enters the failure
probably state. The transition Tf models crash failure of the VM. During the VM restarts from DR site while
the transition Tsw is enabled, every other activity is suspended, the inhibitor arc from place Pfail to transition
Tc is used to model this fact.

The transition Tc models the rejuvenation period. This transition is competitively enabled with Tprobf and
fires when the clock expires if Tprobf has not fired by that time. Once its fires, token moves in the place Prej
and the activity related with software rejuvenation. During the rejuvenation, every other activity in the VM is
suspended. This is modeled by inhibitor arcs from Prej to transitions Tprobf and Tf. Upon rejuvenation, the net
has to be reinitialized into a condition with at least one token in the place Ph and one in the place Pclock, and
all the other places empty. If the VM was in the robust state when Tc fired, then after rejuvenation is
complete, Tr2 fires to re-initialize the net. If the VM had reached the failure probably state (token in Pprobf),
then Tr1 fires to complete the rejuvenation and reinitializes the net.

In the Ph state, failure can cause by hardware faults represented by the firing transition Thw. Firing of
transition Tsw represents the switch over where another active physical server from DR site takes overall the
running operation of the fail physical server from primary site. Transition Tsw can only fire when the DR site
available. After the primary site come back online, the DR site will put back all operations it obtained from
primary site. This return action is represented by the firing of Tswbk. Unless services are migrated, the
transition TDown will fire and reach the fail state (PDown). After that Trepair fires to repair the both physical hosts
and return to healthy and operational state.

Thw

Tsw

Ph
Pclock

Pfail

Pprobf Prej
Tf

Tprobf
Tc

Tr1
Tr2

n

Psw

Tswbk

TDown

PDown

Trepair

Fig.2: Stochastic Petri Net model for Virtualized LocalDR

Ph : Healthy state Pprobf : Failure Probably state Pfail : VMs or one active physical host failure state
Prej : Rejuvenation state Pclock : Rejuvenation Interval state Psw : Switchover state
PDown : Both sites are in failure state

The assumptions for the proposed model are the distribution of time between hardware failures is
assumed to be exponential. Time between software failures caused by aging-related faults is assumed to be
hypo-exponentially distributed. Failure detection time and switchover, repair, rejuvenation, switchback time
are assumed to be exponentially distributed.

3.1 Reachability graph
In this section, we construct the reachability graph for the proposed model. This graph represents the

active physical host with n virtual machine servers at both primary and DR site as shown in Figure 3. Let 7
tuple (Ph, Pprobf, Pfail, Pclock Prej, Psw, PDown) denote the marking with Px =1, if a token is presented in place Px,

and zero otherwise. A marking is reachable from another marking if there exists a sequence of transition

160

firings starting from the original marking that result in the new marking. The marking process is mapped into
a continuous time Markov chain (CTMC) with state space isomorphic to the reachability graph of the PN.

n 0 0 1 0 0 0

n-1 1 0 1 0 0 0

0 n 0 1 0 0 0

0 n-1 1 1 0 0 0

n-2 2 0 1 0 0 0

0 0 n 1 0 0 0

0 0 n-1 1 0 0 1

0 0 0 1 0 0 n

n 0 0 0 1 0 0

n-1 1 0 0 1 0 0

0 n 0 0 1 0 0

0 0 n-1 1 0 1 0

0 0 0 1 0 n 0

λ1

λ1

λ1

λ2

λ2

λ8

λ8

λ9

λ9

λ5 λ6

λ6
λ7

λ7

λ4

λ4

λ3
δ

δ

δ

Hn

Hn-1

Hn-2

Un

Un-1

Fn

D1

Dn

Rn

Rn-1

R0

SW1

SWn

Fig,3: Reachability Graph for the proposed model

Figure 3 illustrates the reachability graph with squares representing the markings and arcs representing
possible transition between the markings. Let λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8 and λ9 be the transition rates
associated with Tprobf,Tf, Tr2, Tr1,Thw, Tsw, Tswbk, TDown and Trepair respectively. And also, let δ be the firing
time associated with transition Tc. By mapping through actions to this reachability graph with stochastic
process, we get mathematical steady-state solution of the chain.

We may compute the steady-state probability by first writing down the steady-state balance equations of
figure as follows.
For marking Hn (n= number of VMs) ߣଷ ோܲ೙ ൅ ସ ෍ߣ ோܲ೙ష೔

௡
௜ୀଵ ൅ ଻ ෍ߣ ௌܲௐ೔

௡
௜ୀଵ ൅ ଽߣ ෍ ௡

௜ୀଵ ஽ܲ೔ = ହ ܲு೙ ൅ߣ ଵߣ ுܲ೙ ൅ ߜ ுܲ೙ (1)

For marking Hn-i (n= number of VMs, i= 1 to n-1) ߣଵ ܲு(೙ష೔)శభ = ଵߣ ுܲ೙ష೔ ൅ ߜ ுܲ೙ష೔ (2)
For marking Rn (n= number of VMs) ߜ ܲு೙ = ଷߣ ோܲ೙ (3)
For marking Rn-i (n= number of VMs, i= 1 to n-1) ߜ ுܲ೙ష೔ = ସߣ ோܲ೙ష೔ (4)
For marking R0 (n= number of VMs) ߜ ௎ܲ೙ = ସߣ ோܲబ (5)
For marking Un (i = n-1, n= number of VMs) ߣଵ ுܲ೙ష೔ = ଶߣ ௎ܲ೙ ൅ ߜ ௎ܲ೙ (6)
For marking Un-i (n= number of VMs, i= 1 to n-1) ߣଶ ௎ܲ(೙ష೔)శభ = ଶߣ ௎ܲ೙ష೔ (7)
For marking Fn (i = n-1, n= number of VMs) ߣଶ ௎ܲ೙ష೔ ൅ ହߣ ܲு೙ = ଺ߣ ܲி೙ ൅ ଼ߣ ܲி೙ (8)
For marking Di (n = number of VMs, i= 1 to n-2) ଼ߣ ܲி೙ = ଼ߣ ܲ஽భ ൅ ଽߣ ܲ஽భ ଼ߣ (9) ܲ஽೔ = ଼ߣ ܲ஽೔శభ ൅ ଽߣ ܲ஽೔శభ (10)
For marking Dn (n = number of VMs) ଼ߣ ܲ஽೙షభ = ଽߣ ܲ஽೙ (11)
For marking SWi (n = number of VMs, i= 1 to n-2) ߣ଺ ܲி೙ = ଺ߣ ܲௌௐభ ൅ ଻ߣ ܲௌௐభ ଺ߣ (12) ܲௌௐ೔ = ଺ߣ ܲௌௐ೔శభ ൅ ଻ߣ ܲௌௐ೔శభ (13)
For marking SWn (n = number of VMs)

161

଺ߣ ܲௌௐ೙షభ = ଻ ܲௌௐ೙ (14)ߣ
The conservation equation of figure is obtained by summing the probabilities of all states in the system

and the sum of equation is 1. ෍ ுܲ೔
௡

௜ୀଵ ൅ ෍ ோܲ೔
௡

௜ୀ଴ ൅ ෍ ௎ܲ೔
௡

௜ୀଵ ൅ ிܲ೙ ൅ ෍ ஽ܲ೔ ௡
௜ୀଵ ൅ ෍ ௌܲௐ೔

௡
௜ୀଵ = 1 (15)

Combining the above-mentioned balance equations with the conservation equation, and solving these
simultaneous equations, we acquire the closed-form solution for the system. ோܲ೙ = ఋఒయ ுܲ೙ (16)

(n= number of VMs) ுܲ೙ష೔ = ቂ ఒభఒభାఋቃ௜ ுܲ೙ (17)
 (n= number of VMs, i =1 to n-1) ோܲ೙ష೔ = ఋఒర ቂ ఒభఒభାఋቃ௜ ܲு೙ (18)
(n= number of VMs, i =1 to n-1) ோܲబ = ఋఒర ܣ ቂ ఒభఒభାఋቃ௡ିଵ ுܲ೙ (19)

 (n= number of VMs) ௎ܲ೔ = ܣ ቂ ఒభఒభାఋቃ௡ିଵ ுܲ೙ (20)
 (n= number of VMs, i =1 to n) ிܲ೙ = ܥ ுܲ೙ (21)
 (n= number of VMs) ௌܲௐ೔ = ܥ ቂ ఒలఒలାఒళቃ௜ ுܲ೙ (22)

 (n= number of VMs, i =1 to n-1) ஽ܲ೔ = ܥ ቂ ఒఴఒఴାఒవቃ௜ ுܲ೙ (23)
 (n= number of VMs, i =1 to n-1) ௌܲௐ೙ = ఒలఒళ ܥ ቂ ఒలఒలାఒళቃ௡ିଵ ுܲ೙ (24)

 (n= number of VMs) ஽ܲ೙ = ఒఴఒవ ܥ ቂ ఒఴఒఴାఒవቃ௡ିଵ ுܲ೙ (25)
 (n= number of VMs)

ுܲ೙ = ൝1 ൅ ଷߣߜ ൅ ෍ ቈ൤ ଵߣଵߣ ൅ ൨௜቉௡ିଵߜ
௜ୀଵ ൅ ସߣߜ ൥෍ ൤ ଵߣଵߣ ൅ ൨௜௡ିଵߜ

௜ୀଵ ൩ ൅ ସߣߜ ܣ ൤ ଵߣଵߣ ൅ ൨௡ିଵߜ ൅ ܥ ൅ ܣ ൥෍ ൤ ଵߣଵߣ ൅ ൨௡ିଵ௡ߜ
௜ୀଵ ൩

൅ ܥ ൥෍ ൤ ଺ߣ଺ߣ ൅ ଻൨௜௡ିଵߣ
௜ୀଵ ൩ ൅ ଻ߣ଺ߣ ܥ ൤ ଺ߣ଺ߣ ൅ ଻൨௡ିଵߣ ൅ ܥ ൥෍ ൤ ଼ߣ଼ߣ ൅ ଽ൨௜௡ିଵߣ

௜ୀଵ ൩
൅ ଽߣ଼ߣ ܥ ൤ ଼ߣ଼ߣ ൅ ଽ൨௡ିଵൡିଵߣ (26)

 Where ܣ = ቂ ఒభఒమ శഃቃ, ܤ = ܣ ቂ ఒభఒభାఋቃ௡ିଵ, ܥ = ଵఒల ାఒఴ ሾߣଶܤ ൅ ହሿߣ
The meaning of the probabilities as follows: ுܲ೔ The probability of the VM is in healthy state ோܲ೔ The probability of the VM is in rejuvenation state ௎ܲ೔ The probability of the VM is in failure probably state ிܲ೙ The probability of the VMs or one active physical host is in failure state ஽ܲ೔ The probability of the both sites are in failure state

162

ௌܲௐ೔ The probability of the VM is in switchover state (i= 1 to n, n= number of VMs)
3.2 Availability and downtime in analysis

In the proposed model, services are not available when both primary site and DR site are down. We also
define the availability of the proposed model as: ݕݐ݈ܾ݈݅݅ܽ݅ܽݒܣ = 1 െ ෍ ஽ܲ೔

௡
௜ୀଵ (27)

The expected total downtime of the application with rejuvenation in an interval of T time units is ݁݉݅ݐ݊ݓ݋ܦ(ܶ) = ෍ ஽ܲ೔
௡

௜ୀଵ ൈ ܶ (28)

3.3 Numerical examples
In this section, we illustrate the applicability of the proposed model and solution methodology through

numerical examples. The exact model transition firing rates for the mod model are not known, a good
estimate value for a range of model transition firing rates is assumed. For this purpose, we perform
experiments using the following failure profile mentioned in Table 1.

Table 1 Transition Firing Rates

Transition Firing Rate (hr -1)
Tfail 3times/month

Tprobf 1 time /a day
Thw 1/106

Trepair 2times/a day
1/Tr1 5 mins
1/Tr2 5 mins
1/Tsw 3 mins

1/Tswbk 3 mins
TDown 3times/month

Tc variable
Figure 4 illustrates the availability changes for the proposed model with different rejuvenation intervals

and different number of VMs had been applied. Best rejuvenation intervals for VMs were 300 hours. It can
be observed that the lower the rejuvenation interval rate, the higher availability can be achieved. When the
number of VMs increased, the higher availability can be achieved. Figure 5 plotted the downtime as a
function of the rejuvenation interval for different number of VMs. The downtime reaches the minimum at the
rejuvenation interval at 300 hours.

Fig.4: Availability vs. different
rejuvenation interval and different

number of VMs

Fig.5: Downtime vs. different
rejuvenation interval and different

number of VMs

Fig.6: Availability vs. different

rejuvenation interval and different
repair rates

Fig.7: Downtime vs. different
rejuvenation interval and repair

rates

The influence of different repair transition firing rates and rejuvenation intervals on availability is shown
in Figure 6. The repair transition firing rates are assumed 2times/a day and 1time/a day for 2 VMs. The faster
repair, the higher availability of the proposed model we will get. Therefore, the availability is dependent on
the repair transition rate when both sites are down. The figure 7 shows the differences in downtime with
different rejuvenation intervals and different repair transition firing rates. From the result, it is apparent that
the proposed model is a high availability in order to integrate virtualization technology, clustering and

0.9999930
0.9999935
0.9999940
0.9999945
0.9999950
0.9999955
0.9999960
0.9999965
0.9999970
0.9999975
0.9999980

300 500 700 900 1100 1300 1500

Rejuvenation Interval (hours)

A
va

ila
bi

lit
y

2 VMs (Derivation) 2 VMs (SHARPE) 3 VMs (Derivation)

3 VMs (SHARPE) 4 VMs (Derivation) 4 VMs (SHARPE)

0.0000
0.0050
0.0100
0.0150
0.0200
0.0250
0.0300
0.0350
0.0400
0.0450
0.0500

300 500 700 900 1100 1300 1500

Rejuvenation Interval (hours)

D
ow

nt
im

e
(h

ou
rs

 p
er

 y
ea

r)

2 VMs (Derivation) 2 VMs (SHARPE) 3 VMs (Derivation)

3 VMs(SHARPE) 4 VMs (Derivation) 4 VMs (SHARPE)

0.9999890

0.9999900

0.9999910

0.9999920

0.9999930

0.9999940

0.9999950

0.9999960

300 500 700 900 1100 1300 1500

Rejuvenation Interval (hours)

A
va

ila
bi

lit
y

λ9=2 times/a day (Derivation) λ9=2 times/a day (SHARPE)

λ9=1 time/a day (Derivation) λ9=1 time/a day (SHARPE)

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

0.0800

0.0900

300 500 700 900 1100 1300 1500

Rejuvenation Interval (hours)

D
ow

nt
im

e
(h

ou
rs

 p
er

 y
ea

r)

λ9=2 times/a day (Derivation) λ9=2 times/a day (SHARPE)

λ9=1 time/a day (Derivation) λ9=1 time/a day (SHARPE)

163

software rejuvenation mechanism. According to the figures it is found that the derivation results and
SHARPE tool simulation results are the same.

4. Conclusion
Many businesses require the availability of business-critical applications 24 hours a day, seven days a

week and can afford no data loss in the event of disaster. To implement this requirement, organizations must
give high availability and disaster recovery. High availability systems require fewer failure and faster repair.
In this paper, active-active clustering architecture is presented in virtualized local disaster recovery in order
to fully utilize resources and which can provide a high level of availability for business continuity. A Petri
net model of virtualized local DR is presented and expressed availability and downtime in terms of the
transition firing rates in the model. The numerical results are validated with the evaluation through SHRPE
tool. It is found that the derivation results and the SHARPE result are the same. The obtained results showed
that combining virtualization technology and software rejuvenation methodology can improve DR
performance.

5. References
[1] B. C. Martin, Disaster Recovery Plan Strategies and Processes, Version 1.3, February 2002.

[2] E.Vargas, High Availability Fundamentals, Sun Blueprints Series, 2000. Online Available:
http://www.sun.com/blueprints.

[3] http://www.citrix.com/

[4] Software Rejuvenation. Department of Electrical and Computer Engineering, Duke University Online Available:
http://www.software-rejuvenation.com/.

[5] Y. Huang, C. Kintala, N. Kolettis and N. D. Fultion, Software Rejuvenation: Analysis, Module and Applications,
June 1995.

164

