
DASM: A New Framework for Modeling and Evaluation of
Distributed Algorithms

Vahid Khalilpour, Moharram Challenger, Ali Farzan and Vahid Heydarinezhad

Islamic Azad University Shabestar Branch

Abstract. Distributed systems are used widely in the world nowadays and distributed algorithms are
among important parts of distributed systems. To run a distributed algorithm, programmer should be involved
with network programming details more than details of distributed algorithm itself. Also, studying the
behaviors of distributed algorithms during its execution and statistic results after execution is very important
to distributed programming. In this paper, a new simple platform, called DASM, is introduced which helps
programmer to implement and evaluate any distributed algorithm. Programmer can implement his/her
distributed algorithm using DASM primitives, and monitors the results in diagrams during execution. User
can make any kind of message and exchange them between processes.

Keywords: Distributed Algorithm, Modelling, Visualization, Evaluation Platform.

1. Introduction
Distributed systems are important and open to do more researches. But as a principle writing a

distributed program is more difficult than centralized one [1]. Some of the reasons are network based
programming, process synchronization like mutual exclusion, fault tolerance, debugging and so on. There are
different tools, platforms and frameworks which are introduced in different papers [1][2]. Also comparing
distributing algorithms’ functionality, correctness and performance evaluations are cumbersome and time
consumer [3].In this paper a new platform called DASM1 will be presented. DASM can model a distributed
algorithm’s running over a computers network. This new environment can aggregate and present different
statistics about messages exchanged between machines during algorithm execution. Distributed algorithm
designer using DASM can model his or her algorithm via comprehensive primitives offered by DASM
without dealing with details of distributed systems or networking issues.

2. Background
Due to the complexity of building distributed system, various tools have been introduced to aid designers.

General purpose message passing tools[1][2][4] present simple services to do message passing. Meanwhile
single-purpose systems like TCGMSG [5] are designed to special application. Most of these tools and
programming environments presents various computing models like data parallelism, task parallelism and
shared memory [3]. Other tools help testing and debugging distributed systems. For example Wang [6]
presented a declarative environment which can simulate a distributed system. The result of system execution
is presented in the form of reports at the end of execution. However, this tool can only present limited
information about number and type of exchanged messages from client to server or vice versa. Another tool
called Net Logger [7] can find out the number of messages exchanged in network and the rate of processor’s
performance. Also it can simply provide statistics on distributed system’s performance and network traffic.
But it cannot display the state of system, nodes and resources while program is executing.

1 Distributed Algorithm Simulating and Modeling

 2011 International Conference on Computer and Software Modeling
IPCSIT vol.14 (2011) © (2011) IACSIT Press, Singapore

146

ConcurrentMentor [2] is another tool which can model a distributed system in 4 diagrams. This tool is
suitable for educational purposes. Students can learn about distributed systems and its algorithms. Hartley
presented a visualization technique in which some information about program execution is stored in text file
format. XTANGo [8] is used to display the execution after accomplishing programs run. One of the most
powerful systems to model distributed systems is PARADE [9] which is built based on POLKA [9].
Systems like XTANGO and PARADE are working in post-mortem way. Its advantage is the utility of stored
data in any time to animate and visualize the execution. Its disadvantage is that the stored data needs a huge
space and the execution should be repeated completely in the case of any change in program. Another tool
called DisASTer [10] is a platform to run distributed algorithms. This tool presents different diagrams for
running processes. It simulate algorithm's execution using threads on a computer and so it has limitation in
number of process.

3. Distributed Algorithm specification
Algorithms for distributed systems are completely different from sequential algorithms [3]. Delay in the

networks is very bigger than processor’s run time. Therefore, the main goal in distributed algorithms’ design
is reducing the number of messages that should be communicated. Fortunately, to design a distributed
algorithm for an application, we mostly need a set of classic repeated tasks [3]. For example send, receive,
broadcast, semi-cast, gather, synchronization and so on. Many other real algorithms like election, mutual
exclusion, fault-detection, taking snapshot, determination detection, and fault-tolerance are implemented
using these primitives [3]. However, some algorithms organize processes in centralized manner [11] and
some other in distributed way. Centralized approaches are simple but with less performance rather than
distributed ones. DASM supports both of them. It is supposed that all of the processes can communicate with
each other. Each process can have its own predefined information, like name, ID, neighbours’ ID and so on.
This tool can present a full report from messages during execution and after execution. Message type can be
defined by user. It can be different for any algorithm to satisfy various needs such as causality ,request , data
exchange and so on.

4. System Model
DASM is designed very simple which a user can inherit a few classes and implement his or her

algorithm. Running this algorithm he can observe different views of algorithm. After implementing the
algorithm, user can define the location of each process and run the algorithm. If the location was not
predefined, this tool locates them according to load of each machine. The tool can be run in the real network
or a single computer. In network, processes are dispenses over machines, but in a single computer it
simulates processes using threads. it is implemented in Java and has 3 main components:

DASM Toolkit: DASM has a management console and a server to detect and connect to other computers.
This console has windows to show processes states, message exchange, and network agents. Each computer
running Agent connects and registers to DASMServer which is in DASMConsole file. Running
DASMserver, detected Agents’ list windows is shown. DASMServer’s main duty is interacting with user,
displaying current state and managing Agents. DASMServer loads the processes according to user’s request
or its own load balancing strategy.

Agent: Agent package has a few communicating classes and an executable class called Agent. This
package should be in any client computer participating in distributed algorithm. After running Agent, it
connects to DASMServer and is ready to execute any submitted process. Algorithm processes are made from
TaskManager class and sent to Agents. An agent can run several processes using separate threads. Each
agent has 2 channels to communicate with other processes which are called MessageQueue to save arriving
messages and MessageDispatcher to send a message.

View: This package includes all of the classes to display the state of running processes in the system
namely, TopologyPanel, SequentcePanel, ProcessPanel and MessageRatePanel which any of them displays
different view of algorithm in a graphical manner. DASM collaboration diagram for main components are
shown in figure 1.

147

DASM
SERVER

Agent

2: RunProcessRemotly

1: SendProcess

3: Message Transmission

View

4: Monitor Events

Receive New Message

event MessageReceive/ Recognize Sender
event ChannelClose/ TerminateAgent

Add to MessageQueue and
Trriger Destination Process

Create New Thread for
Executing the Process

is Server
Message?

Using
TaskManager

[No]

[Yes]

 Figure 1: DASM collaboration diagram Figure 2: message reception in an Agent

4.1. Network Agent Components
After running DASMServer which gets port number, Agent can run and register itself on server. Then

agent waits to receive a message. Receiving TaskMessage means a new process is sent to agent’s machine.
Agent extracts the process and runs it. To run a process, agent gives the process tow object of
communications, MessageQueue and MessageDispatcher, to receive and send message respectively. It is
possible that a process sends a message to another process. At this case, receiver agent gets the message and
delivers it to determined process in it. According to the type of message, receiver agent will reply as
acknowledge. Also according to the type of message, if it is broadcast, the agent delivers the message to all
of processes in it. In figure 2 the activity diagram for receiving a message is shown.

Each process in a machine to receive a message can call one of two methods in MessageQueue:
synchReceive and asyncReceive. Each process which is derived from PROCESS includes different send and
reveive methods like: syncSend, syncReceive, asyncSend, asyncReceive, multiCast, broadCast, semiCast
and so on. User can call any method according to his need. For communicating 2 processes using send
primitives, message is send from the local agent to DASMServer and DASMServer sends the message to
destination. In figure 3 collaboration diagram of process communication is shown.

AgentRouter

NameServer

MessageDispatcher

MessageChannel
(A to Server)

Process A

Process B

MessageChannel
(B to Server)

AgentReceiverMessageQueue

Server Side
Objects

TaskManager

5: PutMessage

4: Locat Process

3: ProcessMessage

2: PutMessage

1: Send

6: ProcessMessage

7: messageReceived

10: Receive

8: AddMessage

9: Triger
Figure 3: Collaboration diagram for communicating two processes

Sending a message is done using MessageDispatcher via channel between agent and server. The server
has a thread of AgentRouter class for each of running agents. It is waiting to receive a message and react to
that. If a connection of an Agent is broken, the processes on it will be removed and the agent will be closed.

148

4.2. DASMToolkit Component
DASMServer package includes classes to interact with user, managing other processes and message

routing. Its executable class is DasmConsole which makes a window to user to show the list of agents. Also
it displays message transmission during algorithm execution.One of the important parts of DASMServer is
NameServer which holds agents information in it. It helps to route the messages and View component
displays this communication. In figure 4, the collaboration diagram for registration of an Agent is shown.
After registration of an agent in NameServer the View is refreshed and new agent is shown in window.

AgentRouter

Process A

Process B

NameServer DasmConsole

1: Send Message

4: SendMessage
2: GetDestenationChannel

3: GetConsole 5: ShowSending
Message

SenderMachine
ReceiverMachine
SenderProcess
ReceiverProcess

DataMessage
Data

TaskMess
age

Process

TextMessage
Text

 Figure 4: Collaboration diagram for registration of an Agent Figure 5: Message inheritance

4.3. NetworkView Component
This component is responsible to display different events during algorithm execution. This component is

informed from message exchanges using DASMConsole and displays the communications in graphical
window. The component has different views. TopologyView shows system agents and displays animated
token in case of communication between processes of agent. SequenceView shows causal sequence of send
and receive between processes. ProcessView shows communications between processes.
MessageTrafficView shows the amount of message submission for any process in the form of bar-diagram.

4.4. Messages
Communicating is done using different messages. To build various message user can use DataMessage.

Any kind data can be sent in a message. All of the messages in DASM should be inherited from Message
class (figure 5). Each message has public information like sender machine address, sender process name,
receiver machine address and receiver process name. The receiver machine address is not compulsory and
DasmServer can find using Naming system. But sender and receiver process name is obligation. Broadcast
field in a message can be set, to send it to all running process.

5. Modelling an Algorithm Using DASM
DASM is network-topology free and DASMServer can run over any arbitrary network. Running

DASMServer makes first agent itself. All agents are shown in DasmConsole (main windows) with IP. Any
computer can run one agent, but an agent can run many processes in it. DASMConsole and Agents should
get two command prompt arguments before running. First their machine name, second port number. There is
a list of “Recognized Agents” in the right part of main window showing IP of running agents in system.By
right clicking on any of the machines in this list, you can send a text message to that agent or disconnect it.

5.1. Implementing an algorithm in DASM
Implementing an algorithm in DASM is simple. You should just inherit the PROCESS class in your

algorithm. Then your algorithm will have primitives and able to connect to others with channels (via
MessageQueue and MessageDispatcher classes). To communicate with other poetesses, algorithm should
build a message. To build a message a new class (containing any data or methods) should inherit from
Message class. To run the algorithm the DASMStart.java should be modified. In this class, there is a method
called RunProcess which can send process on any agent and run that.

149

5.2. Case Study: Producer Consumer Algorithm
Producer-consumer algorithm is one the famous concurrency and process synchronization problems. In

this section the problem is implemented in distributed form between two computers. The communicating
data is considered a simple integer in IntMessage class inheriting Message class.
public class IntMessage extends Message {
 private int data;
 public IntMessage(int o){ data=o; }
 public int setData(int o){ data=o; }
 public int getData(){ return(data); }
}

All of the message information like sender process name sender machine address, receiver process name
receiver machine address and so on are inherited from Message class to IntMessage class. The main
algorithm is implemented inheriting from PROCESS class.
public class Producer extends PROCESS {
 public void Start(){
 int item=0;
 IntMessage message;
 while(true){
 System.out.println(item+" produced");
 message=new IntMessage(item++);
 message.setSenderProcess(getName());
 message.setReceiverProcess("Consumer");
 AsyncSend(message);
 SyncReceive();
 } } }

public class Consumer extends PROCESS {
 public void Start(){
 int item=0;
 IntMessage message;
 while (true){
 message=(IntMessage)SyncReceive();
 System.out.println(message.getData()+"Consumed");
 message.setSenderProcess(this.getName());
 message.setReceiverProcess("Producer");
 delay(1000);
 AsyncSend(message);
 }}

The Producer class is inherited all of its required communicating methods, among them an abstract class
called Start. Derived class should override the Start method and implements algorithm in it. First line, the
setName method assigns process name in desired name. If it is not set, class name is chosen as its name.
Second line makes a message from algorithm message class, IntMessage, in which new messages will be
held. Next lines are "for loop" including: instantiating a new message from IntMessage class setting the
message sender and receiver and finally sending message in asynchronous form and wait for receiving the
answer in synchronous form. Consumer process consumes the receiving data and returns it back to producer
to ensure producer from consume accomplishment and producing next data.

Like Producer, Consumer is derived from PROCESS, overrides Start method and implements its
algorithm in it. It has a loop, waiting to receive a message (synchReceive), consuming the massage's data
(printing its number), changing its sender (itself), changing its receiver (Producer) and finally sending it in
the asynchronous form after a while (delay to control the interactivity). After implementing Producer and
Consumer separately, it's time to run them with changing the DASMStart.java.

public class DASMStart extends DASM{
 public void START(){ RunProcess(new Consumer()); RunProcess(new Producer()); }
}
START makes any process construction and runs them with RunProcess. In this example it instantiates

two objects from Consumer and Producer classes and pass them to RunProcess as parameters. It is possible
to add the location where process should run into runProcess's parameters. After algorithm run, we can
observe deferent views (figure 6). TopologyView displays the TaskMessages in red and other messages in
yellow. It is possible to change the message icon speed in screen from Setting menu. Sequence Diagram
displays the order in which messages are sent between running processes (figure 7).

DASM can report statistics for different aspects of algorithm. Programmer can use these statistics to
analyze message communication rate and algorithm fault-tolerance. To have real state in algorithm,
programmer can define message and machine lost rate separately in Setting menu. After program run in
DASM, programmer can select Statistics menu to view number of processes, exchanged messages, lost
messages and system's overall status.

150

 Figure 6: Topology View Figure 7: Sequence Diagram

6. Conclusions
In this paper a new environment to modeling and monitoring distributed algorithms execution is

presented. One of the significant features of the new framework is that algorithm really runs over a network.
Also it is very simple to use. Programmer can use the framework to implements his distributed algorithm
with inheriting some classes. He calls required Message-passing based primitives inherited from main
classes to avoid dealing with network communication details. Running such implemented program, he can
monitor different views of algorithm's execution like topology view, communication view, messaging
sequence and so on. Also he can display statistics like message number altogether or individually for any
process/machine/agent, message lost, crash rate, traffic rate and so on. User can define required message
types in algorithm inheriting from Message class and send its instantiates from any process to another one.
Finally user can define his desired rate of crash or message lost and evaluates algorithm's fault-tolerance.

7. References
[1] T. Fahringer, A. Jugravu. Java Symphony: New Directives to Control and Synchronize Locality, Parallelism, and

Load Balancing for Cluster and GRID-Computing. Proc. ISCOPE 2002. Washington. 2002: 3-11.

[2] S. Carr, C. Fang, T. Jozwowski, J. Mayo and C. Kuang. ConcurrentMentor:A Visualization System for Distributed
Programming Education. Proc. International Conference on Parallel and Distributed Processing Techniques and
Applications. Las Vegas, Nevada, USA, 2003: 6-23.

[3] N. Santaro. Design and Analysis of Distributed Algorithms. Publication place: JohnWiley&Sons. Hoboken, New
Jersey, 2007.

[4] S.Parsa, V.khalilpour .Automatic Distribution of sequential Code using JavaSymphony Middleware. Lecture Notes
in Computer Science. 2006. 3831: 440-450.

[5] G. Mattson. Programming Environments for Parallel and Distributed Computing. International Journal of High
Performance Computing Applications. 1995. 9(2): 138-161.

[6] Y. Wang, M. J. Rutherford. Automating Experimentation on Distributed Testbeds. Proc. 20th IEEE/ACM
International Conference on Automated Software Engineering. Long Beach, California, USA. 2005: 7-11.

[7] B. Tierney, D. Gunte. NetLogger: A Toolkit for Distributed System Performance Tuning and Debugging. LBNL
Tech Report. LBNL-51276, 2003.

[8] J. Hartley. Animating operating systems algorithms with XTANGO. Proc. 25th SIGCSE technical symposium on
Computer science education. New York. 1994: 6-14.

[9] J. T. Stasko. The PARADE Environment for Visualizing Parallel Program Executions: A Progress Report.
Technical Report GIT-GVU-95-03. Georgia Institute of Technology. Atlanta. January 1995.

[10] R. Oechsle, T. Gottwald. DisASTer (Distributed Algorithms Simulation Terrain): A Platform for the
Implementation of Distributed Algorithms. Proc.10th Annual SIGCSE Conference on Innovation and Technology
in Computer Science Education, ITiCSE2005. Caparica, Portugal, 2005: 6-27.

[11] M. Challenger, V. Khalilpour, P. Bayat, M. R. Meibodi. A New Robust Centeralized DMX Algorithm. Proc.
IASTED PDCN2007. Innsbruck, Austria, 2007: 2-13.

151

