

Regression Model for Software Effort Estimation Based on the Use
Case Point Method

Ali Bou Nassif1,a, Danny Ho2,b and Luiz Fernando Capretz1,c +
1 Department of ECE, University of Western Ontario, London, Ontario, Canada

2NFA Estimation Inc., Richmond Hill, Ontario, Canada

Abstract. It is very important to conduct software estimation in the early stages of the software life cycle,
because it helps managers bid on projects and allocate resources efficiently. This paper presents a novel
regression model to estimate the software effort based on the use case point size metric. The use case point
model takes use case diagrams as input and gives the software size in use case points as output. The proposed
effort equation takes into consideration the non-linear relationship between software size and software effort,
as well as the influences of project complexity and productivity. Results show that the software effort
estimation accuracy can be improved by 16.5% using PRED(25) and 25% using PRED(35).

Keywords: Use Case Points, Size Estimation, Effort Estimation, Regression Model

1. Introduction
The use case point method was proposed by Karner in 1993 [1]. It is one of the methods that can be used

for size and effort estimation which is based on use case diagrams of software projects. The use case point size
is calculated by counting the number of use cases and actors, multiplied by their complexity weights. The
complexity of each use case is calculated by counting the number of transactions in the success and extension
scenarios of the use case scenario. Tables 1 and 2 present the complexity rates of the use cases and actors
respectively.

The use case point size is calculated through two stages. This includes the Unadjusted Use Case points
(UUCP) and the Adjusted Use Case Points (UCP). The UCCP is expressed in Equation 1 [1]. ܷܷܲܥ = ∑ ݊ כ ܹ.ୀଵ (1)

where ni is the number of items of variety i (use case or actor) and Wi is the complexity rate. In order to
calculate the UCP, technical and environmental factors (TFs and EFs) of the project should be considered. TF
contributes to the complexity of the system whereas EF contributes to the efficiency of the system. TF and EF
are shown in tables 3 and 4 respectively. TF is calculated as: ܶܨ = 1ܥ ∑ 2ܥ ܨ כ ܹଵଷୀଵ . (2)

where 1ܥ = 0.6, 2ܥ = 0.01 and ܨ is a factor that takes values between 0 and 5. The value “0” means the
factor is irrelevant while the value “5” is essential. The value “3” means that the factor is not very essential, nor
irrelevant. For instance, if all the factors have a value of “3”, the TF will be 1.

+ aabounass@uwo.ca, bdanny@nfa-estimation.com, clcapretz@uwo.ca

 2011 International Conference on Computer and Software Modeling
IPCSIT vol.14 (2011) © (2011) IACSIT Press, Singapore

106

Table 1: Weighted Use Cases [1]
Use Case
Complexity

Number of
Transactions

Weight

Simple 3 or fewer 5
Average 4 to 7 10
Complex More than 7 15

 Table 2: Weighted Actors [1]
Actor
Complexity

Description Weight

Simple Through an API 1
Average Through a text-based user interface 2
Complex Through a GUI 3

Table 3: Technical Factors [1]

Fi Factors contributing to complexity Wi
F1 Distributed systems 2
F2 Application performance objectives 1
F3 End user efficiency 1
F4 Complex internal processing 1
F5 Reusability 1
F6 Easy installation 0.5
F7 Usability 0.5
F8 Portability 2
F9 Changeability 1
F10 Concurrency 1
F11 Special security features 1
F12 Direct access for third parties 1
F13 Special user training facilities 1

Table 4: Environmental Factors [1]
Fi Factors contributing to efficiency Wi
F1 Familiar with Objectory 1.5
F2 Stable requirements 2
F3 Analyst capability 0.5
F4 Application experience 0.5
F5 Object oriented experience 1
F6 Motivation 1
F7 Difficult programming language -1
F8 Part-time workers -1

 On the other hand, the environmental factor EF is calculated as: ܨܧ = 1ܥ ∑ 2ܥ ܨ כ ଼ܹୀଵ . (3)
where 1ܥ = 1.4, 2ܥ = െ0.03 and ܨ a factor that takes values between 0 and 5, same interpretation as
outlined previously. The adjusted use case points (UCP) can be calculated as: UCP = UUCP × TF × EF. (4)

The maximum value of TF is 1.3, if the value of all technical factors is 5. Typically, by taking the practical
values of TF and EF into consideration, the value of UCP will be 30% more or less than UUCP. According to
Karner, the software effort is calculated as: Effort = Size × 20. (5)

where size is the calculated software size in UCP and the effort is measured in person-hours.

2. Problem Definition
In Equation 5, Karner proposed a method to calculate the software effort from software size. However, this

method has several shortcomings. These shortcomings include:
• Karner assumed that the relationship between the effort and size is linear. This assumption is not true in

real life. For instance, if the effort required to build a software project of size 250 UCP is 5,000
person-hours, the effort needed to build the same project type of size 500 UCP would be more than
10,000 person-hours.

• In Equation 5, the effort is a function of UCP size. As explained in the previous section, the UCP
encompasses the non-functional requirements of the system and it may increase the original UUCP by
30%. However, IBM states that the non-functional requirements might represent more than 50% of the
total effort [2]. This means that the non-functional requirements may virtually increase the unadjusted
size by 100%.

The proposed model tackles these shortcomings.

3. Related Work
Some work has been done to enhance the effort estimation of UCP model. These include:
Sparks et al. [3] reported that the effort to develop one UCP should be between 15 and 30 person-hours.

However, the authors did not state in details how this range should be applied.
Schneider et al. [4] mentioned that although the environmental factors are included in UCP, they should

also be considered while calculating the effort. The authors suggested counting the number of factor ratings of

107

F1-F6 in Table 4 (EF) that are below 3 and the number of factor ratings of F7-F8 that are above 3. If the total is
less than 3, then 20 person-hours per UCP should be used. If the total is 3 or 4, then 28 person-hours per UCP
should be used. If the total is 5 or more, then the project team should be reconstructed so that the numbers fall
at least below 5. A value of 5 indicates that this project is at significant risk of failure with this team. The main
limitation of this method is that the effort required to develop one UCP is either 20 or 28 person-hours.

Nassif et al. [5] applied a fuzzy logic approach to enhance UCP model. However, the original software
effort equation has been used in this work (Equation 5).

4. Research Methodology and Implementation
The general equation of software effort can be represented as [6]:

Effort = ௫௧௬ௗ௨௧௩௧௬ × (6) .݁ݖ݅ܵ
where Complexity is the complexity factor of a project and Productivity is the productivity factor of the team
that is developing this project. The first step of the proposed model is to discover the non-linear relationship
between software size and software effort. For this purpose, regression analysis was applied on several projects
that have similar project complexity and team productivity. Regression analysis assumes that data should be
normally distributed [7]. If the histograms of software size and effort were normally distributed, the regression
equation would be:

Effort = a × Size + b. (7)
where a and b are constants.

Several experiments were conducted using Minitab to determine how data were distributed. The histograms
of software size and effort showed that data were not normally distributed. After normalizing data using
logarithmic transformation (ln size and ln effort), data became normally distributed. The regression equation
after logarithmic transformation using Minitab version 16 is:

Effort = 8.16 × ܵ݅݁ݖଵ.ଵ . (8)

where Size is the software size in UCP and Effort is the effort in person-hours. For instance, Equation 8 shows
the non-linear relationship between Effort and Size, and ignores the Complexity and Productivity factors. The
main equation of software effort is expressed in Equation 9.

To measure the accuracy of the regression equation (equation 8), we measured the value of R2. R2 is the
percentage of variation in Effort explained by the variable Size. The value R2 reported for the regression model
in Equation 8 is 0.972. Approximately 97 % of the variation in Effort can be explained by the variable Size.
This shows a strong relation between Size and Effort.

Karner only took the influence of complexity and productivity factors when calculating the adjusted use
case size (UCP). As seen in Equation 5, the software estimation based on Karner’s model is a function of
UCP. Schneider [4] reported that the software effort is a function of the UCP and team productivity. The
non-productive team might raise the estimation effort by 40% (28 person-hours for 1 UCP versus 20
person-hours for productive team). Francalanci et al. [8] argue that project complexity should be taken into
consideration and this can increase the software effort by 27%. We believe that the software effort should be a
function of UCP, complexity and productivity. The main equation for software effort in the proposed model is
expressed as:

Effort = 8.16 × ௧_C୭୫୮୪ୣ୶୧୲୷ௗ௨௧௩௧௬ × ሺܵ݅݁ݖሻଵ.ଵ. (9)

Karner’s technical factor TF (see Equation 2) increases or decreases the unadjusted size by 30%. Although

the technical factors in Table 3 do not include all complexity factors, yet, Karner’s technical factor TF can
represent the Project_Complexity factor during the estimation of UCP and consequently, the
Project_Complexity factor in Equation 9 can be ignored.

With respect to productivity, Table 4 lists some productivity attributes. Better approach than Schneider has
been taken to calculate the Productivity factor. Based on Table 4, the highest Productivity factor is achieved
when the value of the factors F1 to F6 is 5 and the value of the factors F7 and F8 is 0. This implies that the value
of (∑ ܨ כ ଼ܹୀଵ ሻ is 32.5. On the other hand, the lowest productivity is achieved when the value of F1 to F6 is
set to 0 and the value of F7 and F8 is set to 5. This implies that the value of (∑ ܨ כ ଼ܹୀଵ ሻ is -10. The
Productivity factor is determined based on the value of (∑ ܨ כ ଼ܹୀଵ ሻ. Table 5 shows the proposed values of
Productivity:

108

Table 5: Productivity Factor

(∑ ࡲ כ ୀૡࢃ ሻ Productivity Description Productivity Factor
Less than 0 Very Low 0.4
Between 1 and 10 Low 0.7
Between 11 and 20 Average 1
Greater than 20 High 1.3

If the productivity is very low, there is a big risk that the project might not be completed. A Productivity

Factor of value 0.4 indicates that the effort estimation should be increased by 150%. If the productivity is high,
the effort estimation will be decreased. If the project complexity is high and the productivity is low, the effort
estimation will increase between 80% and 100% which reflects the IBM’s assumption.

Based on the assumptions above, the Project_Complexity factor can be ignored while the productivity
factor remains. The final equation of the proposed model is:

Effort = ଼.ଵௗ௨௧௩௧௬ × ሺܵ݅݁ݖሻଵ.ଵ. (10)

where Effort is in person-hours, Size is in UCP and Productivity is a value between 0.4 and 1.3.

5. Evaluation
The evaluation of the proposed model was performed using 24 projects that were not included among the
projects used in the regression analysis. Software estimation was conducted using Karner’s, Schneider’s, and
the proposed model. In software estimation, most practitioners use MMRE and PRED(x) to calculate the error
percentage. MMRE is the Mean of the Magnitude of Relative Error and it is a very common criterion used to
evaluate software cost estimation models [9]. The Magnitude of Relative Error (MRE) for each observation i
can be obtained as:
ܧܴܯ = | ௧௨ ா௧ି ௗ௧ௗ ா௧ |௧௨ ா௧ (11)

MMRE can be achieved through averaging the summation of MRE over N observations: ܧܴܯܯ = ଵே ∑ ேଵܧܴܯ . (12)

On the other hand, PRED(x) is the percentage of projects for which the estimate falls within x% of the

actual value. For instance, if PRED(30) = 60, this indicates that 60% of the projects fall within 30% error range.
Table 6 shows the evaluation results of Karner’s, Schneider’s and the proposed model. The columns Kar, Sch,
Pro, Imp_Sch_Kar, Imp_Pro_Kar and Imp_Pro_Sch represent Karner, Schneider, the proposed model,
improvement of Schneider over Karner, improvement of the proposed model over Karner and improvement of
the proposed model over Schneider. In table 6, the results show that the proposed model improves the MMRE
of original use case point model by 6%. Moreover, the results also show substantial improvements in PRED(x)
over Karner. PRED(25) and PRED(35) were improved by 16.5% and 25% respectively.

Table 6: Comparison Between Karner, Schneider and the Proposed Model

Criteria Kar (%) Sch (%) Pro (%) Imp_Sch_Kar (%) Imp_Pro_Kar (%) Imp_Pro_Sch (%)

MMRE 34.0 30.0 28.0 4.0 6.0 2.0

PRED (25) 37.5 62.5 54.0 25.0 16.5 -8.3

PRED (35) 50.0 66.6 75.0 16.6 25.0 8.3

PRED (50) 87.5 83.3 91.6 -4.2 4.1 8.3

PRED (75) 95.8 91.7 95.8 -4.1 0 4.1

PRED (100) 100 95.8 95.8 -4.2 -4.2 0

6. Conclusions

109

The use case point model has been used to conduct early software effort estimations. The main
advantage of this model is that it is simple and can be easily automated. However, the original model
ignores the non-linear relationship between software effort and size and it lacks accuracy in the effort
estimation. A new regression model has been proposed to tackle these drawbacks.

Future work will focus on two main concerns. First, the proposed model should be tested with
projects of larger sizes (greater than 5,000 person-hours) when data are available. Secondly, the
productivity factors proposed in Table 5 should be calibrated using a fuzzy logic approach.

7. References

[1] G. Karner. Resource Estimation for Objectory Projects. Objective Systems, 1993.

[2]Y. Ossia. (2011), IBM haifa research lab. IBM Haifa Research Lab [Online]. Available:
https://www.research.ibm.com/haifa/projects/software/nfr/index.html.

[3] S. Sparks and K. Kaspczynski. The art of sizing projects . Sun Works, 1999.

[4] G. Schneider and J. P. Winters, Applied use Cases, Second Edition, A Practical Guide. Addison-Wesley, 2001.

[5] A. B. Nassif, L. F. Capretz and D. Ho, "Enhancing Use Case Points Estimation Method using Soft Computing
Techniques," Journal of Global Research in Computer Science, vol. 1, no. 4, pp. 12-21, November, 2010.

[6] D. D. Galorath and M. W. Evans, Software Sizing, Estimation, and Risk Management. Boston, MA, USA: Auerbach
Publications, 2006.

[7] A. C. Cameron and P. K. Trivedi. Regression Analysis of Count Data. Cambridge, UK: Cambridge University Press,
1998.

[8] C. Francalanci and M. Francesco. The impact of complexity on software design quality and costs. in European
Conference on Information Systems, 2008, pp. 1-13.

[9] A. B. Nassif, L. F. Capretz and D. Ho. Software estimation in the early stages of the software life cycle. in
International Conference on Emerging Trends in Computer Science, Communication and Information Technology,
2010, pp. 5-13.

110

