
A Software Reliability Evaluation Method

Qiuying Li and Haifeng Li

School of Reliability and Systems Engineering, Beihang University, Beijing, China

Abstract. Software reliability evaluation plays a very important role in the development of software, but
the traditional software evaluation method mostly focuses on evaluation by use of failure data which is
gained only after testing or usage in the late phase of the software life cycle. Thus people hope to get every
stage’s information about the software’s reliability which is taken as the reference or accordance to guide the
software’s design, analysis and testing and so on. A software reliability evaluation method is put forward in
this paper, which focuses on lots of information correlative with reliability during the whole software life
cycle. Finally an application is put forward to demonstrate the feasibility of this method.

Keywords: software reliability, reliability evaluation, reliability measurement, measurement factor

1. Introduction
Software reliability evaluation is playing an important role in software reliability engineering, which can

give information taken as the reference or accordance to guide the software’s design, analysis and testing and
so on. Finally it will provide the quantitative estimation result for the issued software product.

In recent years, software reliability evaluation based on failure data has been deeply developed, as the
main means of software reliability estimation, lots of software reliability growth models have been
proposed[1-5]. But with the shortcoming of not very good evaluation quality, many new models and technique
were proposed to effectively improve the reliability estimation performance, such as Neural-Network-based
model presented by N.Karunanithi[6], chaos deduce model[7], Bayes networks model[8], fuzzy theory model[9]
and so on. New technologies are also proposed, such as the failure data trend analysis and prediction quality
improvement[10-11]. Based on the statistical theory, David et al.[12-14] proposed several software reliability
assessment methods which established the sampling theory for software reliability evaluation. With the
shortcoming of only applied in the late phase of the software life cycle, such as testing and maintenance
process, its application is hindered. Whether it can be used in the early phase of software development
becomes a hot and hard question. Li et al[15-17] provided the software reliability comprehensive evaluation
method from the view of system theory. IEEE standard 982.1 stated that various factors related to the
product, process and resource of software in the whole software life cycle will have great influences on
software reliability[18]. Reference [19] presented the findings of empirical research from 13 companies
participating in software development to identify the factors that may affect software reliability. Some
software engineering experts want to use commonly used software metrics to predict software reliability in a
direct way, thus whether these can give new ideas for software reliability evaluation?

2. Analysis of software reliability evaluation factors
Reference [19] presents the findings of empirical research from 13 companies participating in software

development including AT&T, BellCore, Chrysler and MCI International to identify 32 factors that may
affect software reliability. These factors are analyzed and ranked in terms of their impact on software

 Corresponding author. Tel.: + 8601082339169; fax: +8601082313913.
 E-mail address: li_qiuying@buaa.edu.cn.

 2011 International Conference on Computer and Software Modeling
IPCSIT vol.14 (2011) © (2011) IACSIT Press, Singapore

95

reliability. Based on [4] and [17], this paper presents 30 ordinary factors as the objectives to be further
studied, which is shown in Table 1, also these factors are classified into product factors, process factors and
resource factors.

• Product factors: Product factors are software attributes or characteristics which have something to do
with software size, document and structure. That is to say, it is a static parameter which can be
collected from software design documents etc.

• Resource factors: Resources factors can be divided into three classes: human, reusable software
component, software and hardware environment.

• Process factors: Process factors refer characteristics and behaviors in every stage of software
development.

3. Evaluation method
Here the software reliability evaluation method refers well-known hardware reliability demonstration

method[20], whose principle is to use factors’ information to give an auditing for reliability, then according to
grading scores to calculate the evaluation value. The steps are given as follows: ascertain factors used for
auditing; list the detailed contents required auditing; design expert grading table, collect information of
factors and choose software experts; organize experts to audit and grade according to information and
contents; combine the experts’ grading results to obtain the integrated evaluation results.

Thus software reliability evaluation is a process of auditing and demonstration, which not only presents
evaluation results but also finds the latent defects in the process of software development and testing to guide
and improve the process accordingly.

3.1. Ascertain factors for auditing
Factors listed in Table 1 can be regarded as objectives for auditing. Before evaluation, factors can be

chosen as the auditing set according to the reality requirement. For example, in the early stage of
development, factors affect software reliability can be chosen just involved in that stage.

3.2. Ascertain contents to be checked
Contents to be checked are those requirements for factors involved in software design, development and

testing process and characteristics of software itself, e.g. software reliability design method as fault-tolerance,
fault-avoidance and control of software complexity. Also the contents should be simple and accurate,
distinctive and covering all characteristics. Some examples are shown in Table 2.

3.3. Design grading table for expert auditing
Based on hardware reliability qualitative demonstration method[20], the following four type grades are

given as follows: excellent-the work underlying has been done very well and fulfilled the requirement
completely even exceed the demand to some extent, which is equal to 90-100; good-the work underlying has
been done well and fulfilled the requirement except some mistakes without affecting software reliability
heavily and could be corrected easily, which is equal to 75-90; normal-the work underlying has been done
and fulfilled the requirement primarily except a lot of serious mistakes are made affecting software reliability
to some extent and ought to be corrected with lots of efforts, which is equal to 60-75; bad-the work
underlying has been done badly and not fulfilled the requirement with a lot of serious mistakes affecting
software reliability severely, which ought to be done over again to avoid more severe losses, whose score is
below 60. Expert auditing grading table can be designed as Table 2.

3.4. Auditing and grading
• Hypothesis and notation:Suppose m is the number of factors and n is the number of experts. iE is the

ith considered factor, where mi ~1= .Let ip be the number of contents under iE , ijS be the jth
content of factor iE , therefore ipj ~1= .Suppose every expert has the same significant impact, then
let weight for iE is iw and weight for every expert is 1/n.Let ijku be the score of ijS given by the kth
expert, therefore ikU be the score of iE given by the kth expert.

• Grading method:Grading score is an arbitrary real number in [0,1]. To express clearly, the grading
result is expressed as a natural number in the interval [0,100].Let the highest software reliability is

96

100. Many factors will be used for evaluation and based on software itself and all factors’ impact,
every factor is assigned a highest score as the basis to integrated marks. Let iA be the basic mark of

iE where 100
1

=∑
=

m

i
iA .The simplest method of ascertaining basic score is in terms of weight as

follows
100×= ii wA (1)

Take iE for example, expert k gives a mark ijku after careful auditing for every content, then expert k
gives a total mark for iE , i.e. ikU is：

100
1

×
×=
∑

=

i

p

j
ijk

iik p

u
AU

i

 (2)

By Eq. 2, one can get the total mark iU for iE by all experts such that

ik

n

k
i U

n
U ∑

=

=
1

1
 (3)

By Eq. 3, one can get the final grading score iU for factor iE .

3.5. Software reliability integrated evaluation result
The integrated evaluation result of software reliability R is as follows:

∑
=

=
m

i
iUR

1
 (4)

04-grading method is used to give the weight of factor iE .The principle of 04-grading method is given

as follows:1)Expert grades separately without discussing between each other;2)When the significance of two
factors compared, the comparing method is adopted and the following three steps can be used such
that:i)Between two factors, the more important one gets the score of 4 and the other gets 0;ii)Between two
factors, the relatively important one gets the score of 3 and the other gets 1;iii)If two factors are of the same
importance, they all get 2;3) The two factors cannot both get 4 or cannot both get 0.Examples are given as
Table 4.

4. Application
Here gives a simple application.

• Ascertain factors for auditing：For convenience, take 7 factors from Table 1 noted as
GFEDCBA ,,,,,, for example.

• Ascertain contents to be checked：The contents to be checked are shown as Table 2.
• Design grading table for expert auditing：The table is shown as Table 3.
• Auditing factors：Suppose seven software experts are invited to audit 7 factors and the
weights are calculated as Table 4. E.g. expert A gives an auditing result as which is shown in Table
5.Take factor A (software complexity) for example, the score from expert A is computed as follows,
then final result is shown as Table 6.

1AU ＝
1005

908080859020
×

++++× ＝17.1 (5)

• Result of integrated reliability evaluation： In terms of the results in Table 6, by Eq.4 ,then

∑
=

=
m

i
iUR

1

＝88.3 (6)

5. Conclusion
A software reliability evaluation method based on influencing factors was put forward. By means of

experts grading and auditing, in terms of contents to be checked, the integrated evaluation result was
achieved. From the practice of application, not only evaluation result can be obtained, but also guidance can

97

be put forward to improve the process of software development and testing and so on, which would play an
important role in software engineering practice. More suitable factors, relationship between classification of
factors and weights, contents to be considered should be further studied in future work.

Table 1 List of ordinary factors

Type No Factor Name Type No Factor Name

Product
factors

1 software complexity

Process
factors

16 testing coverage
2 percentage of reused code and modules 17 test case
3 user’s quality objective 18 fault detecting and removing process
4 software programming languages 19 test efforts
5 nature of defects and failures 20 documentation
6 programmer’s skill 21 design methodologies

Resource
factors

7 development team size 22 software development design methodologies and
technology

8 programmer organization 23 software operation
9 user’s skill 24 development management
10 testing tools 25 work standard
11 testing environment 26 relationship of detailed design to requirements

12 hardware resource 27 frequency of program specification and requirements
change

13 software development environment 28 difficulty of programming
14 testing resource allocation 29 whole schedule

Process
factors 15 testing methodologies 30 programming effort

Table 2 Contents of factors to be checked

Factor Contents to be checked

software complexity

Does software have a good architecture system

percentage of defects caused by source code size
software McCabe’s complexity
software functionality
code readability

Table 3 Grading table for factors’ contents

Factor Contents to be checked
Grading ranks

Grading results
excellent good normal bad

software
complexity

Does software have a good architecture system √ 90
percentage of defects caused by source code size √ 80
software McCabe’s complexity √ 80
software functionality √ 85
code readability √ 90

Table 4 Statistical results by 04-grading method

Factor A B C D E F G Grading score Weights

A -- 4 4 3 3 2 1 17 0.20

B 0 -- 3 2 2 0 0 7 0.08

C 0 1 -- 1 2 0 0 4 0.05

D 1 2 3 -- 2 1 0 9 0.11

E 1 2 2 2 -- 1 0 8 0.10

F 2 4 4 3 3 -- 1 17 0.20

G 3 4 4 4 4 3 -- 22 0.26

Amount -- -- -- -- -- -- -- 84 1

98

Table 5 Grading table of expert A

Factors Contents to be checked
Grading ranks Grading

results excellent good normal bad

software
complexity

Does software have a good architecture system √ 90

percentage of defects caused by source code size √ 80
software McCabe’s complexity √ 80

software functionality √ 85
code readability √ 90

Table 6. Grading results of all experts

Factor Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7
Integrated grading

score
Basic score

A 17.1 17.8 18.8 18.1 18.7 17.6 15.9 17.7 20

B 6.5 6 6.3 6.8 7.1 5.7 6.7 6.4 8

C 4.3 3.9 4.1 4.4 3.8 4.1 4.3 4.1 5

D 9.2 9.9 9.8 9.4 10.1 9.2 10 9.7 11

E 9 9.1 8.8 8.6 9.5 9 8.8 9 10

F 16.4 18.2 18.9 17.3 19.1 18.4 17.4 18 20

G 21.5 23.6 23.2 24.6 22.7 23.2 24.8 23.4 26

Amount -- 88.3 100

6. References
[1] R. Z. Xu, M. Xie and R. J. Zheng. Software Reliability Model and Application. Beijing: Tsinghua University Press,

1994(in Chinese).

[2] S. Yamada Osaki. Software reliability growth modeling: Models and applications. IEEE Trans. Software
Engineering SE-11(12), 1431-1437, 1985.

[3] J. D. Musa, A. Iannino and K. Okumoto. Software Reliability: Measurement, Prediction, Application. Mc-Graw-
Hill, New York, 1987.

[4] H. Pham. Software Reliability. Springer-Verlag, Singapore, 2000.

[5] S. Yamada. Software reliability models In Stochastic Models in Reliability and Maintenance. Springer-Verlag,
Berlin, 2002, 253-280.

[6] N. Karunanithi, D.Whitley and Y. K. Malaiya. Prediction of Reliability Using Connectionist Models. IEEE
Transactions on Software Engineering, 18(7), July 1992, 563-574.

[7] F. Z. Zou. Software reliability theoretical analysis and computation. Ph.D thesis of Wuhan University of
Hydraulic and Electric Engineering, 1999(in Chinese).

[8] C. G. Bai.Software reliability research based on Bayesnetworks. Ph.D thesis of Zhejiang Univers,1999(in
Chinese).

[9] J. H. Guo,X.Z.Yang and H.W.Liu.Software Reliability Nonlinear Modeling and Its Fuzzy Evaluation.4th Wseas
Int. Conf. on Non-linear analysis, non-linear systems and chaos, Sofia, Bulgaria, October 27-29, 2005,49-54.

[10] B. Littlewood. Forecasting Software Reliability. CSR Technical Report,1989.

[11] S. Brocklehurst, P. Y Chan and B. Littlewood. Recalibrating Software Reliability Models. IEEE Trans.on
Software Engineering, SE-16(4), 458-470, Apr.1990.

[12] L. P. David, A. John, S. P. Kwan. Evaluation of Safety-critical Software. Communication of ACM, 1990(6).

[13] D. L. Parnas, G.J.K. Asmis, J. Madey. Assessment of Safety-critical Software in Nuclear power plants. Nuclear
safety, 1991(2).

[14] W. H. Howden. Good enough versus High Assurance Software Testing and Analysis Methods. In Proc. of IEEE
HASE, 1998.

99

[15] H. F. Li, M. Y. Lu, Z. X. Wang and Z. Li. Framework for software reliability comprehensive evaluation based on
grey system theory, Journal of Beijing University of aeronautics and astronautics,34(11), 2008(in Chinese).

[16] B. Liu, M.Y. Lu and L. RUAN. Early Software Reliability Prediction: an Approach Based on Fuzzy Neural
Network Journal of Beijing University of aeronautics and astronautics,2001,27(2) (in Chinese).

[17] T. J. Wang and M. Li. A Fuzzy Comprehensive Evaluation Model for Software Reliability. Computer engineering
and applications, 2002, 38(20) (in Chinese).

[18] IEEE Std 982.1-1988, IEEE Standard Dictionary of Measures to Produce Reliable Software, IEEE, 1988.

[19] X. M. Zhang, Hoang Pham. An analysis of factors affecting software reliability.The journal of systems and
software, 2000, 50,43-56.

[20] RMS qualitative demonstration method. National defence technology report, 2004(in Chinese).

100

