
A Survey on the Maintenance of Software Structure in Thai Software
Industries

Panita Meananeatra 1, Songsakdi Rongviriyapanish 1 and Taweesup Apiwattanapong2
1 Computer Science Department, Thammasat University, Pathumthani, Thailand

2 Software Engineering Laboratory, National Electronics and Computer Technology Center, Pathumthani,
Thailand

Abstract. “One who knows the enemy and knows himself will not be in danger in a hundred battles”, Sun
Tzu, who is a Chinese scholar, said. The same saying is true in the software maintenance area. If we want to
resolve maintenance problems, we should understand their root causes. However, existing research shows
that most development teams poorly maintain software because they lack time, maintenance knowledge and
support tools. Unfortunately, no research surveys the maintenance practice of the software structure in
Thailand’s software industries for knowing the current status. Therefore, the purpose of this survey is to find
out the current status of that practice in Thai software industries. Our survey focuses on four topics:
awareness, techniques, problems in that practice and refactoring practices. We use three data collection
methods: material survey, web survey and telephone interview. The material survey results show the
background of software maintenance. The web survey and telephone interview collected the opinions of
interviewees at the organization level and the personal level on those four topics. Moreover, we conclude that
Thai software industries are aware of the importance of the maintenance practice, and they would rather use a
design pattern technique than a refactoring technique. In addition, they want a tool that helps suggest
refactoring for improving the maintainability of the software structure.

Keywords: Software development, software maintenance, software structure

1. Introduction
In software industries, software development phases are the most important key to match the needs and

qualities that customers desire. Sometimes products are being developed continuously; therefore, products
should be easily maintainable before the beginning of later phases. For example, at the end of the design
phase, the designer should maintain the structure in such a way that it can be changed easily. Similarly, at the
end of the implementation phase should maintain the code in such a way that it can be read, understood, and
changed easily. Moreover, most software needs to be change (e.g., requirement change, design change,
technology change), so developers should modify the software. Modification affects the systematic design
and code. The software becomes more complicated, so it is not easily understood and enhanced. The well-
maintained software will be easily understood and developed. Software maintenance decreases the rework
cost in development.

The definition of software maintenance by IEEE is as follows [3]: “The modification of a software
product after delivery to correct faults, to improve performance or other attributes, or to adapt the product to
a modified environment”. According to Lientz and Swanson, there are four types of maintenance: corrective,
adaptive, perfective, and preventive [5, 6]. Adaptive changes are made the software environment changes,
and perfective changes are made to accommodate new user requirements. Corrective changes are made to fix
errors, and preventive changes are made to prevent problems in the future. Corrective, adaptive and
perfective changes have the long-term effects of increasing the system’s complexity [7]. Unlike others,
preventive maintenance makes programs easier to understand and hence facilitaties future maintenance

 2011 International Conference on Modeling, Simulation and Control
IPCSIT vol.10 (2011) © (2011) IACSIT Press, Singapore

189

works [7]. Examples of preventive maintenance include restructuring and optimizing code as well as
updating documentation. Two well-known restructure techniques are Design Pattern and Refactoring.

A Design pattern is a consensus on the most efficient solution to solve a given problem [9]. The use of a
pattern guarantees good analysis and design practices. Refactoring is a technique for improving software
structure without changing its behaviour[2]. A bad smell is defined as a program characteristic that indicates
the need to use the design pattern [9] and to refactor a program[2]. Most bad quality programs have bad
smells. Bad smell removal increases qualities such as understandability, maintainability and modifiability.
However, existing research shows that most development teams poorly maintain software due to lack of time,
maintenance knowledge and tools.

Thailand has many software houses, companies and organizations. Unfortunately, no research survey on
the maintenance practice of software structure in Thailand’s industry has been conducted. Therefore, the
purpose of this survey is to investigate the current status on that practice in Thai software industries”. Our
survey focuses on four topics: 1) attitude about awareness, 2) techniques (e.g. design pattern and refactoring),
3) problems in that practice and 4) refactoring practice (how to apply, problems when they use). This paper
is organized as follows. Section 1 introduces important background for implementing this survey. Section 2
explains the steps of this survey. Section 3 describes the results of three data collections: material survey,
web page survey and telephone interview. Finally, Section 4 discusses conclusions and future work.

2. Methodology
This section explains the six steps of this survey: 1) establish the goal of the survey, 2) determine

samples, 3) choose data collection methodologies, 4) crate questionnaires, 5) conduct surveys, and 6) analyze
the data. In the first step, the goal of survey is “to investigate the current status on the maintenance practice
of software structure in Thailand’s industries”. In the second step, the target group is software development
teams in software houses or organizations that develop software (five companies). Data were collected
through three methods: material survey, web survey, and telephone interview. Material survey has questions
about basic background of this survey. After that, questionnaires of the web survey and telephone interview
are created by using questions. Web survey has 15 questions that are organized into three parts: the general
information of interviewees, the opinions of interviewees at the organization level, and opinions of
interviewees at the personal level. We use Google Doc to create the web survey as shown in Fig 1.
Telephone interview focuses on refactoring process and the problems that occurred when developers apply
refactorings. In the survey step, we planned and gathered data. The plan has four parts; 1) material survey,
we searched background of software maintenance, 2) web survey, we used data from previous part for
creating questionnaire, 3) the questionnaire sent to interviewees by email, waited response, and summarized
response, 4) telephone interview, we selected interviewees for interviewing from response. The last step,
analyze the data, was shown in the next section. This survey lasted in six weeks.

 Fig. 1 (a): design form of questionnaire on Google Doc Fig. 1 (b): questionnaire web page on Google Doc

190

3. Results and Discussion

This section discusses the results of three surveys; material survey, web survey, and telephone interview.

3.1. Material survey
Software development includes many phases: design, implementation, testing, deployment, and

maintenance. The product should be easily maintainable before deriver in earlier phases. For example, the
design phase should plan the structure in a way that structure can be easily changed. Similarly, the
implementation phase should create code that can be easily read, understood, and changed. Most software
projects, maintenance phase consumes a large part of the overall lifecycle costs and is required many
changes. Therefore, software maintenance is necessary and helps to increase business opportunities [4]. The
four major problems that can slow down the maintenance process are unstructured code, maintenance
programmers having insufficient knowledge of the system, documentation being absent, out of date or
insufficient, and unawareness to the importance of software maintenance [1]. The definition of software
maintenance by IEEE is as follows [3]: “The modification of a software product after delivery to correct
faults, to improve performance or other attributes, or to adapt the product to a modified environment”.
According to Lientz and Swanson, there are four types of maintenance: corrective, adaptive, perfective, and
preventive [5, 6]. Corrective maintenance deals with fixing bugs in the code. Adaptive maintenance deals
with adapting the software to new environments. Perfective maintenance deals with updating the software
according to changes in user requirement. Finally, preventive maintenance deals with updating
documentation and making the software more maintainable, such as updating documentation, adding
comments, and improving the modular structure of the system [6]. The survey showed that around 75% of
the maintenance effort was on the first two types, and error correction consumed about 21%. Many studies
suggest similar results. These studies show that the new user requirements are the core problem for software
evolution and maintenance.

Corrective, adaptive and perfective changes have the long-term effects of increasing the system’s
complexity [7]. A large program is continuously changed, thus, its complexity, which reflects deteriorating
structure, increases unless work is done to maintain or reduce it. This work is known as preventive change.
The change is usually initiated from within the maintenance organization with the intention of making
programs easier to understand and hence facilitaties future maintenance work [7]. Example of preventive
change includes restructuring and optimizing code as well as updating documentation.

The term “restructuring” means reorganizing the procedural logic of a computer program so that it
conforms to the rules of structured programming [8]. Two well-known restructure techniques are Design
Pattern and Refactoring. A design pattern is a consensus on the most efficient solution to solve a given
problem [9]. The use of a pattern guarantees good analysis and design practices. Refactoring is a technique
for improving software structure without changing its behaviour[2]. A bad smell is defined as a program
characteristic that indicates the need to use the design pattern [9] and to refactor a program[2]. Most bad
quality programs have bad smells. Bad smell removal increases qualities such as understandability,
maintainability and modifiability. However, existing research shows that most development teams poorly
maintain software due to lack of time, maintenance knowledge and tools.

3.2. Web page survey
The questionnaire is divided into three parts: the general information of interviewees, the opinions of

interviewees at organization level and at personal level. We gathered data by using the spreadsheet that is
generated from Google Doc. A total of 32 respondents in 17 companies completed the survey. These
participants have different roles in software development. These roles are senior manager, project manager,
business analyst, software architect, software analyst, developer, tester, quality person, and marketing
coordinator. Some participants may play more than one role in their projects. There are many programming
languages used in the development, such as, Java, C++, PHP, MS C#, MS VB, Python, C, Perl, PL/SQL,
Dephi and shell script. The result from responses showed that the number of respondents who used object-
oriented languages: Java, C++ and MS C# is more than the one who use traditional languages. From our
objective, we discuss three topics: awareness, techniques, problems in this section.

191

a. Awareness
In the study, 29 of 32 respondents felt that directors of their organizations support to the maintenance of

software structure as seen from related activities: quality audit, training on the topic of software structure
improvement and announced policy. It implies that most organizations have awareness on the maintenance
of software structure. However, three respondents express their opinion that the directors of their
organizations currently do not support the maintenance of software structure because of the lack of
knowledge in maintenance, staffs and time. Two of them stated that the directors will support to improve
maintenance of software structure in the future, but the other could not provide the answer.

In the opinions of interviewees at the organizations level and at personal level, they improved software
structure in five phases: designing, implementation, testing, maintenance, and deployment. Moreover, they
are awareness of the maintenance of software structure themself. The personal level, most interviewees
improved software structure in the implementation phase more than the other phases because it helps them to
easily understand, modify and reuse code.

b. Techniques
Two well-known techniques for improvement in software structure are design pattern and refactoring. At

the organization level, 25 respondents used design pattern, and 20 respondents used refactoring. Some
participants used both techniques in their projects. At the personal level, 16 respondents used design pattern
and 11 respondents used refactoring. Therefore, design pattern are used more than refactoring at both the
organization level and the personal level.

c. Problems
The problems in the improvement of software structure include six issues: time limit, developer skill, no

standard of software structure improvement, rapid technology changes, diverse platforms and environments
and complicated software design.

3.3. Telephone survey
In term of the respondents, refactoring skill, there are seven persons out of 32 who have one to ten-year

experience. The result of the telephone interview came from four interviewees. Our other objective, we
discuss the details of refactoring activities in four topics: motivation for refactoring, methods for assessing
code that is refactored, the problem in refactoring activities and the developer suggestion.

For the motivation to refactor, all four interviewees refactor code when requirement changes occur,
where as only two interviewees do when a bad smell occurs after coding.

The assessment of effectiveness of refactoring applied has four methods; 1) requirement matching with
software functions or compile and test pass, 2) the assessment of understandability with an owner developer
and a reviewer, 3) changes in execute time and 4) software metric (e.g. line of code) comparison between
before applied refactorings and after them.

Three problems in refactoring activities are: 1) Developer Skill in refactoring, such as less experience
and do not know how to select refactoring, framework and design pattern, 2) developer Skill in Tool such as
do not know which tool or plug in support apply refactoring and design pattern and do not know how to
apply program element using tool, and 3) tool such as cannot analysis and summarize of result after apply
refactoring.

The suggestion of developers, they want tool that can present reasons of change, show requirement
change impact which classes, illustrate refactor impact classes, and help to decide whether to refactor.

4. Conclusion and Future Work
This survey aims to investigate “current status on the maintenance practice of software structure in Thai

software industry” and focuses on four topics in software structure: awareness, techniques, problems in that
practice and refactoring practice. This survey consists of six steps: 1) establish the goal of the survey, 2)
determine samples, 3) choose data collection methodologies, 4) crate questionnaires, 5) conduct surveys, and
6) analyze the data. The target group is software development teams in software houses or organizations that

192

develop software (five companies). Data were collected through three methods: material survey, web survey,
and telephone interview.

The results of three methods reveal many findings. The first result, material survey, shows the answers to
many questions such as “What is software maintenance and why software maintenance is important?”,
“What are techniques in software maintenance?”, and “What problems are in software maintenance?” Next,
the result of web survey is divided into three parts. 32 persons from 17 companies participated. 1) In general
Information, programming languages used are Java, PHP, C++, MS C#, MS VB, and other. 2) At the
organization level, 29 respondents felt that directors of their organizations support to the maintenance of
software structure. However, three respondents express their opinion that the directors of their organizations
currently do not support the maintenance of software because of the lack of maintenance knowledge, staffs,
executive support and time. 3) At the personal level, developers improve software structure during five
development phases and are aware of the importance of improving the software structure. Developers prefer
design pattern than refactoring. The problems of software structure improvement are the lack of resource, the
limitation of organization standard, limited developer skill, and complicated software design. Only seven
persons out of 32 have experience in refactoring. For the result of telephone interview of four interviewees,
all interviewees refactor code when requirement changes occur, where as only two do so when a bad smell
occurs after coding. Participants use four methods for assessing the effectiveness of the refactoring applied.
The problems in refactoring activity can be grouped into three categories: developer skill in refactoring,
developer skill in tool, and the lack of tools.

The discussion focuses on the same four topics as the survey. This survey shows that Thai software
industries are aware of the importance of the maintenance practice. Thai developers prefer the design pattern
technique than the refactoring technique. Also, more developers refactor code when requirement changes
occur than when bad smells are found. In addition, developers want tool that can present reasons of change,
show classes that are affected by requirement changes and help decide whether to refactor.

5. References
[1] Y. Kataoka, T.Imai, H. Andou and T. Fukaya. Quantitative Evaluation of Maintainability Enhancement by

Refactoring. in Proceedings of the International Conference on Software Maintenance (ICSM’02), 2002.

[2] M. Fowler. Refactoring: Improving the Design of Existing Programs. Addison-Wesley, 1999.

[3] IEEE Std. 1219: Standard for Software Maintenance. Los Alamitos CA., USA. IEEE Computer Society Press,
1993.

[4] K.H. Bennett and V.T. Rajlich. Software Maintenance and Evolution: a Roadmap. In ICSE 2000: Proceedings of
the Conference on The Future of Software Engineering, pp. 73-87, 2000.

[5] B. P. Lientz and E. Swanson, Software Maintenance Management. Addison Wesley, Reading, MA, 1980.

[6] H. V. Vliet, Software Engineering: Principles and practices, 2nd Edition. John Wiley & Sons, West Sussex,
England, 2000.

[7] A. A. Takang and P. A. Grubb , Software Maintenance Concepts and Practic. Thompson Computer Press London,
UK,1996.

[8] E. Yourdon. Re-3, Part 1: Re-engineering, Restructuring, and reverse Engineering. American Programmer, vol. 2,
No. 4, Apr. 1989, pp 3-10.

[9] A.L. Baroni, Y. -G. Gueheneuc and H. Albin-Amiot. Design patterns formalization. Rapport de recherche,
Department d’informatique, Ecole des Mines de Nantes, number 01/01/INFP, 2003.

193

