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Abstract: Proposed technique of dimension reduction, unmixing and target detection is apparent to 
implement and compute the results in a very fast and efficient manner. Targets Alunite, Buddingtonite, 
Calcite, Kaolinite, and Muscovite are detected well and have high spectral similarities. To reducing the 
computational complexity Standard Deviation with respect to correlation distance ሺSTDχ െ CORሻ method is 
used. Number of end-members is enumerating by orthogonal subspace projection (OSP) method. The 
expectation maximization framework infers the unmixing matrix. Abundance fractions are modeled as a 
mixture of density functions and it cannot be unmix easily that is why self iteration method is adopted. A set 
of tests with real hyperspectral data evaluates the performance and illustrates the effectiveness of the 
proposed method. The experimental results show the effectiveness of the method on hyperspectral data 
unmixing. Hyperspectral remote sensing is used in a large array of real life applications e.g. Surveillance, 
Mineralogy, Physics, and Agriculture. The entire work is done by using MATLAB.  
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1. Introduction 
Hyperspectral remote sensing is the exact tool for increasing knowledge and perceptive of the earth’s 

surface. Hyperspectral imaging is anxious with capacity, examination, and analysis of the spectra acquired 
from a given sensor at a short, medium or long distance by an air-borne or satellite [1]. NASA’s Jet propulsion 
Laboratory (JPL) began a revolt in remote sensing by developing new instruments such as the air-borne 
imaging spectrometer. This concept of hyperspectral imagery was bigning in the 1980’s by A. F. H. Goetz and 
his colleagues at NASA’s [1]. This was used more than 200 spectral bands and able to cover the wave-length 
region from 0.4 െ 2.5 μm at nominal spectral resolution of 10 μm. Hyperspectral remote sensors collects 
concurrently image data in dozens or hundreds slight and neighboring spectral bands over wave-length that 
can range from the close to ultraviolet through the thermal infra-red at resolution of fine 10 μm.  

Hyperspectral system produces a substantial amount of data. The measurements make it feasible to drive a 
continuous spectrum for each image cell. These images spectra can be compared with the field or laboratory 
reflectance spectra in order to recognize and map surface materials such as particular types of vegetations or 
diagnostic minerals associated with ore deposits. The radiance acquired by hyperspectral sensors cannot be 
directly compared with the spectral library radiance or even any other radiance data sets. It is just because of 
the atmospheric effects and illuminations. To overcome this problem, transform the radiance spectra into the 
reflectance which make atmospheric correction. Hyperspectral data enables the analysis to detect more 
materials, objects, and regions of interest with more accuracy than previously possible. The science of remote 
sensing has advanced over the past years by using progressively more capable sensors.     
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Hyperspectral data Dimensional Reduction, Unmixing and Target Detection problem is addressed in this 
article. Decomposition of pixel spectrum into the collection of spectral signatures and corresponds their 
abundance fractions is called the hyperspectral unmixing. The spectral resolution with spatial resolution can 
be changed by unmixing.  

Data reduction is a consequence of the fact that the number of end-members presents in the scene is 
usually much smaller than the number of bands. Dimensional reduction is reduce the computational 
complexity and improves the signal to noise ratio. Therefore reducing the dimensionality without missing 
important information is very important issue for remote sensing community. Dimensional reduction is 
categorized in two ways: Feature Extraction is done by mapping the correlation of high dimensional data onto 
uncorrelated low dimensional data. Feature Selection is usually carried out the original feature space; these 
techniques do not alter the original representation of the variables but merely select a subset of them. There is 
no need of any transformation while selecting a subset of features for dimensional reduction, but the main 
focus on selecting features among the existing features. 

Unmixing of hyperspectral data is usually carried out the two steps. First is to estimates the spectral 
signatures of the different end-members and second is to find the abundance fractions of each end-member. 
To perform the hyperspectral unmixing and target detection procedure, a mixture model must be adopted 
either linear or non-linear mixture model. In our proposed work a linear mixture model used and described 
below. To illustrate this, assume that a linear combination of Sത୧ ൌ  ൣSሬറଵ Sሬറଶ … Sሬറ୧൧ signatures and their 
corresponding abundance fractions  Aሬሬറ୧ ൌ  ሾaଵ aଶ  …  a୧ሿ T, i = 1, 2… K. where K is total number of targets and 
L is total number of bands. Thus  Xሬሬറ୧ ൌ  Sത Aሬሬറ    Wሬሬሬറ                                                                                                   ሺ1ሻ 

Where W is an additive white Gaussian noise. The mixing matrix Sത can be inferred if the columns of Sത are 
linearly independent, than Aሬሬറ can be computed and thus the materials can be resolved within pixel without 
increasing the spectral resolution. A necessary condition for the columns of Aഥ to be independent is L  K.     
2. Problem Statement 

Our main focus and attention is to enhance the results of hyperspectral dimensional reduction, unmixing 
and target detection accuracy by using statistical constraints. The emergence of image data with large number 
of spectral bands has presented image processing and interpretation challenges yet they not experienced with 
hyperspectral data sets. There is a need to develop the data reduction, unmixing and detection methods to 
utilize the maximum amount of information and reparability that hyperspectral images data offers while 
simultaneously avoiding the difficulties inherent in hyperspectral space.  

2.1 Dimensional Reduction 
Suppose that hyperspectral data contains ሼXഥ୧ሽ୧ୀଵL band images and STD෪ ୧ is the standard deviation of ith 

band image. Then we have [2]    

Xഥ୧ ൌ  ൭ 1MN ൫b୧ െ STD෪ ୪൯ଶMN
୧ୀଵ ൱ଵଶ                                                                                               ሺ2ሻ 

Where MN is total number of pixels in each band image, Xഥ ൌ  ሾxሬറଵ, xሬറଶ … xሬറ୬ሿ , the distance between the 
vectors ሾxሬറ୰ሿ & ሾxሬറୱሿ is defined as [3],     X୰ୱ ൌ 1 െ  ሺx୰ െ  xത୰ሻ ሺxୱ െ  xതୱሻTሾሺx୰ െ  xത୰ሻ ሺx୰ െ  xത୰ሻTሿଵଶ ሾሺxୱ െ  xതୱሻ ሺxୱ െ  xതୱሻTሿଵଶ 

The result from above L band images is given as Xഥ ൌ  ሾXഥ୧ሿ୧ୀଵL  [3-4] and also selected bands are shown in 
Figure 1.  

2.2 Proposed Method for Unmixing  
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Presume that Xഥ ൌ rҧ  Wഥ  , here rҧ is a data matrix of size (L x M) and Wഥ  is a white noise matrix, where L is 
total number of bands and M is total number of pixels in data. The projecting matrix is estimated as,  αሺrҧሻ ൌ  ∑ ቂቀሾ୰ሬറି Eሾ୰ሬറሿሿM ቁ ቃL୧ୀଵ  ;       βሺrҧሻ ൌ  ቀ ඥሺSሺrറ୧ሻሻభ/మ ቁ  so ρത୰ത ൌ  ஒ 
The Eigen value decomposition of projecting matrix is found as,  rҧ ൌ  Uഥ ∑ഥ UഥT  
Here Uഥ  is the Eigen values matrix and ∑ഥ  is a diagonal matrix having real diagonal elements λ୧ such that  λଵ   λଶ   λଷ  λ୫୧୬ሺ୪,୫ሻ ڮ  0. Since λ୧are the singular values of Uഥ and the first minሺm, nሻ columns of Uഥ and UഥT are the left and right singular vectors of Uഥ . Since Pഥ is the projected matrix onto Eigen values matrix Uഥ.  Pഥ ൌ Uഥ כ UഥT                                                                                                         ሺ4ሻ 
Since the mean of the data matrix and projection matrix is estimated as  

Eሾxതሿ ൌ  1N  xሬറ୧N
୧ୀଵ  

EሾrҧWሿ ൌ  1N  rറW୧N
୧ୀଵ  

So the order of data is defined as, ε is a scaling factor,  K ൌ   argmin ቄε כ trace ൫Uഥ כ ρത୰തW൯ െ ቀ trace ൫Eሾxതሿ כ Uഥ כ EሾxതሿT൯ቁቅ 

The subspace of data can be found as [4-5], and this part is a back bone of our work.  rҧ୩ ൌ I െ Uഥ כ ሺUഥT כ UഥሻശሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ כ  UഥT X ഥ ൌ  rҧ୩ כ rҧ  
Where ሺUഥT כ UഥሻശሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ is the pseudo inverse of Uഥ.  Aഥ୩ ൌ  ൬Uഥ୧ כ  ቀαഥ୩ െ  βത୩ቁ൰  
Hence the mixing matrix is found as Sത  ൌ  Xഥ כ  Aഥ ିଵ and since abundance fractions are modeled as a mixture of 
source densities, so it cannot be unmixed easily, so for this we used self iteration method. The unmixing 
matrix infer by using the expectation maximization algorithm [6].  
3. Results  

In the presented research work, a sub image of size 350×350 with 224 bands of a data set taken on the 
AVIRIS flight [7] has been used and shown in Figure 2 A, and the laboratory end-members signatures for 189 
bands are predominantly of Alunite-AL706NA, Buddingtonite-NHB2301, CalciteCO2004, 
KaoliniteKGa1wxl, and Muscovite-GDS108 are shown in Figure 2 B. The instrument of AVIRIS covers 0.41 
– 2.45 µm regions in 224 bands with a 10 nm bandwidth and flying at an altitude of 20 km, it has an 
Instantaneous field of view (IFOV) of 20 m and views a swath over 10 km wide. Prior to the analysis of 
AVIRIS Cuprite image data, low SNR bands 1 – 3, 105 – 115 and 150 – 170 have been removed and the 
remaining 189 bands are used for experiments. Preserving the maximum information, the number of bands 
required are 22.  

The found and laboratory end-members signatures are predominantly of Alunite AL706NA and 
Buddingtonite NHB2301 are shown in Figure 3 (A-B). The ground truth spectral coordinates are 161-62; 234-
209; 347-30; 298-22; 271-33. The 3-dimensional visualization of the end-members abundance fractions 
shows in Figure 4 (A-C). Since the detected end-members shows high similarity among the same end-
members. The spectral angles between found and actual signatures of predominantly Alunite-Alunite, 
Buddingtonite-Buddingtonite, Calcite-Calcite, Kaolinite- Kaolinite, and Muscovite-Muscovite are as follows 
0.048636, 0.035872, 0.029117, 0.058609, and 0.039505. The product matrix M-est of mixing matrix and M is 
identity in an ideal scenario but obtained in our case is given at the end of the results corresponding for all five 
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minerals namely Alunite AL706NA, Buddingtonite NHB2301, CalciteCO2004, Kaolinite KGA1-WX1, and 
Muscovite GDS108.  

 
Figure 1: Selected Bands 

Figure 2 A: 20th Band of Cuprite image: Ground truth spectral positions of four minerals 
Figure 2 B: USGS spectral signatures of Alunite-AL706NA, Buddingtonite-NHB2301, CalciteCO2004, 

KaoliniteKGa1wxl, and Muscovite-GDS108 for 189 bands. 
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Figure 4 (A-C): 3-Dimensional visualization of spectral signatures for Alunite-AL706NA, Buddingtonite-NHB2301, 

and Muscovite-GDS108. 
 

4. Conclusion 
The end-members are detected well and have high spectral similarities. The total CPU processing time for 

both subspace estimation by OSP, Unmixing, and end-members detection is 35.297 seconds on Intel core i-7 
processor. OSP method is used for estimating the subspace, which spans the original space. The whole work is 
done by using MATLAB. Here one thing is to be noted that this method is only for reduced hyperspectral data 
(22 bands) not for full bands (189 bands). This method is approximately perfect for 22 bands.  
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